实时计算 Flink版产品使用合集之如何将Oracle中的BLOB数据类型转换为byte数组

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC这个启动模式,只有在首次启动才有效对嘛?

Flink CDC这个启动模式,只有在首次启动才有效对嘛,如果是从savepoint恢复的话,也会按照之前启动的参数走,改这个从savepoint恢复是无效的?



参考答案:

是的,首次为主



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/577341



问题二:Flink CDC中sqlserver cdc需要配置的一个条件是啥意思?

Flink CDC中sqlserver cdc需要配置的一个条件是啥意思?



参考答案:

在使用Flink CDC进行SQL Server的实时同步时,需要满足以下条件:首先,您在使用Flink CDC进行SQL Server的实时同步时,需要满足以下条件:首先,您需要安装支持CDC功能的SQL Server,例如SQL Server 2008及其后续版本。其次,必须开启SQL Server代理。最后,为了从SQLServer数据库读取快照数据和增量数据,您需要启用CDC功能。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/577340



问题三:用Flink CDC做 ETL。4张表的数据量都接近1亿,checkpoint一直失败,如何调优呢?

用Flink CDC 做 ETL。4张表的数据量都接近1亿,checkpoint一直失败,如何调优呢?CDC有单独的参数可以控制吗?



参考答案:

Flink CDC中,Checkpoints对于有状态的作业能可靠地运行至关重要。为了解决checkpoint一直失败的问题,您可以尝试以下方法进行调优:

  1. 调整并行度:增加或减少并行度可能会影响作业的性能和稳定性,因此需要根据实际情况进行调整。
  2. 调整Checkpoint超时时间:根据作业的实际情况,适当延长或缩短Checkpoint的超时时间,以确保Checkpoint的顺利完成。
  3. 调整Checkpoint模式:Flink支持多种类型的checkpoint,例如增量checkpoint、异步checkpoint等,不同类型的checkpoint恢复流程可能会有所不同。尝试更改checkpoint模式可能有助于解决问题。
  4. 调整内存分配:根据实际情况,适当增加或减少任务管理器的内存分配,以确保任务能够正常运行。
  5. 使用Flink Web UI监控Checkpoint和State:Flink Web UI提供了丰富的监控指标,可以帮助您更好地了解作业的状态和性能。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/577339



问题四:Flink CDCoracle blob 数据类型怎么转换为byte 数组?

Flink CDCoracle blob 数据类型怎么转换为byte 数组?



参考答案:

在Flink CDC中,如果需要将Oracle中的BLOB数据类型转换为byte数组,可以使用以下方法:

  1. 使用getBytes()方法获取BLOB字段的字节数组。例如:
byte[] blobBytes = resultSet.getBytes("blob_column");
  1. 使用getBinaryStream()方法获取BLOB字段的二进制流,然后将其转换为byte数组。例如:
InputStream inputStream = resultSet.getBinaryStream("blob_column");
byte[] blobBytes = new byte[inputStream.available()];
inputStream.read(blobBytes);

请注意,在使用上述方法时,需要确保数据库连接和结果集对象都已正确初始化。同时,还需要处理可能出现的异常情况,例如SQLException等。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/577338



问题五:Flink CDC只监听一个字段 其他字段数据可以拿到吗?

Flink CDC只监听一个字段 其他字段数据可以拿到吗?



参考答案:

Flink CDC可以监听多个字段,并且可以获取其他字段的数据。在Flink CDC中,可以通过定义数据模式来指定需要监听的字段,然后使用Flink SQL或Table API来查询这些字段的数据。

例如,假设有一个名为orders的表,包含以下字段:idnamepricequantity。如果只想监听price字段的变化,可以在定义数据模式时仅指定该字段,如下所示:

DataStream<Row> orders = env.addSource(new FlinkCDCSource<>(
    "orders",
    new DebeziumDeserializationSchema.Builder()
        .with(...) // 配置source端信息
        .with("io.debezium.relationship.column.names", "pk") // 指定主键列名
        .with("value.converter", "io.debezium.converters.JsonConverter") // 指定值转换器
        .build(),
    new MySqlOffsetBackfiller()));

然后可以使用Flink SQL或Table API来查询其他字段的数据,例如:

// 使用Flink SQL查询所有订单的价格和数量总和
Table ordersTable = tEnv.fromDataStream(orders, "id, name, price, quantity");
Table result = tEnv.sqlQuery("SELECT price, SUM(quantity) as total_quantity FROM orders GROUP BY price");

或者使用Table API查询所有订单的价格和数量总和:

Table ordersTable = tEnv.fromDataStream(orders, "id, name, price, quantity");
Table result = tEnv.toRetractStream(ordersTable, Row.class).groupBy("price").select("price, SUM(quantity) as total_quantity");



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/577337

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
13天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
664 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
10天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
1天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
14 0
|
26天前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
63 1
|
29天前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
27天前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。
|
28天前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
38 0
|
2月前
|
运维 分布式计算 监控
评测报告:阿里云实时计算Flink版
本评测主要针对阿里云实时计算Flink版在用户行为分析中的应用。作为一名数据分析师,我利用该服务处理了大量日志数据,包括用户点击流和登录行为。Flink的强大实时处理能力让我能够迅速洞察用户行为变化,及时调整营销策略。此外,其卓越的性能和稳定性显著降低了运维负担,提升了项目效率。产品文档详尽且易于理解,但建议增加故障排查示例。
|
2月前
|
机器学习/深度学习 运维 监控
阿里云实时计算Flink版体验评测
阿里云实时计算Flink版提供了完善的产品内引导和丰富文档,使初学者也能快速上手。产品界面引导清晰,内置模板简化了流处理任务。官方文档全面,涵盖配置、开发、调优等内容。此外,该产品在数据开发和运维方面表现优秀,支持灵活的作业开发和自动化运维。未来可增强复杂事件处理、实时可视化展示及机器学习支持,进一步提升用户体验。作为阿里云大数据体系的一部分,它能与DataWorks、MaxCompute等产品无缝联动,构建完整的实时数据处理平台。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多