实时计算 Flink版操作报错之Apache Flink中的SplitFetcher线程在读取数据时遇到了未预期的情况,该怎么解决

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

问题一:Flink CDC跑联表任务时候,程序的内存会慢慢增大,这个报错是因为什么呢?


Flink CDC跑联表任务时候,程序的内存会慢慢增大,达到4G左右的时候会突然降到300M,同时jobmanager日志里显示有报错ERROR org.apache.flink.runtime.rest.handler.taskmanager.TaskManagerStdoutFileHandler [] - Failed to transfer file from TaskExecutor 10.186.196.84:6122-16e4eb.

java.util.concurrent.CompletionException: org.apache.flink.util.FlinkException: The file STDOUT does not exist on the TaskExecutor.我使用的是rocksdb状态后端,taskmaner总内存8G,这个报错是因为什么呢?


参考回答:

这个报错是因为在Flink CDC任务执行过程中,TaskExecutor无法找到STDOUT文件。这可能是因为TaskExecutor的内存不足导致的。你可以尝试增加TaskExecutor的内存配置,以解决这个问题。

具体操作如下:

  1. 打开Flink配置文件flink-conf.yaml,找到taskmanager.memory.process.sizetaskmanager.memory.fraction这两个参数。
  2. taskmanager.memory.process.size设置为一个较大的值,例如8G或更高。这将为TaskExecutor分配更多的内存空间。
  3. taskmanager.memory.fraction设置为一个较小的值,例如0.4或更低。这将限制TaskExecutor可以使用的最大内存比例。
  4. 保存并关闭配置文件。
  5. 重新启动Flink集群以使更改生效。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/577433



问题二:Flink CDC这个问题是啥原因导致的 经常出现 有没有解决办法?


Flink CDC这个问题是啥原因导致的 经常出现 有没有解决办法?


参考回答:

根据您提供的信息,问题似乎是由于Apache Flink中的SplitFetcher线程在读取数据时遇到了未预期的情况。这可能是由多种因素引起的,例如网络连接中断、磁盘I/O错误或数据库服务器故障等。

要解决此问题,请尝试以下步骤:

  1. 检查源端(如MySQL)是否正常运行,并且能够提供所需的数据。
  2. 确保网络连接稳定并且没有其他应用程序占用过多带宽。
  3. 如果使用的是Kafka作为消息队列,则检查Kafka集群的状态和配置以确保其可用性。
  4. 调整Flink任务并行度设置,可能需要增加更多的并发执行器来处理更大量的数据流。
  5. 使用日志分析工具对异常进行深入调查,找出具体的问题所在点。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/577425



问题三:Flink CDC是想着测试一下mongocdc, 运行时报错?


Flink CDC是想着测试一下mongocdc, 运行时报错?maven目前导入的所有依赖,maven 依赖冲突检测


参考回答:

少个connector-base


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/577417



问题四:Flink CDCrest-api的stop接口触发后,TM报错?


Flink CDCrest-api的stop接口触发后,TM报错?

2023-12-07 02:51:31,529 WARN org.apache.flink.streaming.connectors.kafka.internals.KafkaFetcher [] - Committing offsets to Kafka failed. This does not compromise Flink's checkpoints.

org.apache.flink.kafka.shaded.org.apache.kafka.clients.consumer.CommitFailedException: Commit cannot be completed since the group has already rebalanced and assigned the partitions to another member. This means that the time between subsequent calls to poll() was longer than the configured max.poll.interval.ms, which typically implies that the poll loop is spending too much time message processing. You can address this either by increasing max.poll.interval.ms or by reducing the maximum size of batches returned in poll() with max.poll.records.

at org.apache.flink.kafka.shaded.org.apache.kafka.clients.consumer.internals.ConsumerCoordinator$OffsetCommitResponseHandler.handle(ConsumerCoordinator.java:1433) ~[flink-sql-connector-kafka-1.17.1.jar:1.17.1]

at org.apache.flink.kafka.shaded.org.apache.kafka.clients.consumer.internals.ConsumerCoordinator$OffsetCommitResponseHandler.handle(ConsumerCoordinator.java:1333) ~[flink-sql-connector-kafka-1.17.1.jar:1.17.1]

这个有谁能看下吗


参考回答:

这个错误是由于Kafka消费者在提交偏移量时,发现消费者组已经重新分配了分区并分配给了另一个成员。这通常意味着在调用poll()之间的时间间隔超过了配置的max.poll.interval.ms,这通常意味着poll循环花费了太多时间处理消息。

要解决这个问题,你可以尝试以下方法:

  1. 增加max.poll.interval.ms的值。这将允许poll循环处理更多的消息,从而减少提交偏移量失败的可能性。
  2. 减少poll()返回的最大批次大小(max.poll.records)。这将限制poll循环一次处理的消息数量,从而减少处理时间。

具体操作如下:

  1. 修改Flink配置文件(flink-conf.yaml),增加或修改以下配置项:
taskmanager.network.memory.min: 64mb
taskmanager.network.memory.max: 1024mb
taskmanager.network.memory.fraction: 0.7
taskmanager.network.memory.min-heap-size: 64mb
taskmanager.network.memory.min-off-heap-size: 64mb
taskmanager.network.memory.off-heap-size: 1024mb
taskmanager.network.memory.off-heap-fraction: 0.5
  1. 重启Flink集群以使更改生效。
  2. 如果问题仍然存在,可以考虑调整Kafka消费者的配置,例如增加max.poll.interval.ms和max.poll.records的值。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/577412



问题五:Flink CDC这个有什么影响吗?


Flink CDC这个有什么影响吗?想监听6个表,他们的主表外键是一个。我想监听到变更以后,把union成视图后关联主表同步出去,用的union 就提示Unable to register metrics as an old set with the same name exists这个?14:33:49,824 INFO org.apache.flink.runtime.checkpoint.CheckpointCoordinator [] - Completed checkpoint 2 for job 7a0969df757939e6aa25783f1e507a10 (2607 bytes, checkpointDuration=21 ms, finalizationTime=4 ms).

14:33:49,824 WARN com.ververica.cdc.debezium.DebeziumSourceFunction [] - Consumer subtask 0 received confirmation for unknown checkpoint id 2

14:33:49,825 WARN com.ververica.cdc.debezium.DebeziumSourceFunction [] - Consumer subtask 0 received confirmation for unknown checkpoint id 2

14:33:49,825 WARN com.ververica.cdc.debezium.DebeziumSourceFunction [] - Consumer subtask 0 received confirmation for unknown checkpoint id 2

14:33:53,985 WARN io.debezium.metrics.Metrics [] - Unable to register metrics as an old set with the same name exists, retrying in PT5S (attempt 4 out of 12)

14:33:53,985 WARN io.debezium.metrics.Metrics [] - Unable to register metrics as an old set with the same name exists, retrying in PT5S (attempt 4 out of 12)

14:33:53,985 WARN io.debezium.metrics.Metrics [] - Unable to register metrics as an old set with the same name exists, retrying in PT5S (attempt 4 out of 12)

14:33:55,825 INFO org.apache.flink.runtime.checkpoint.CheckpointCoordinator [] - Triggering checkpoint 3 (type=CheckpointType{name='Checkpoint', sharingFilesStrategy=FORWARD_BACKWARD}) @ 1701844435824 for job 7a0969df757939e6aa25783f1e507a10.

14:33:55,843 INFO org.apache.flink.runtime.checkpoint.CheckpointCoordinator [] - Completed checkpoint 3 for job 7a0969df757939e6aa25783f1e507a10 (2607 bytes, checkpointDuration=18 ms, finalizationTime=1 ms).

14:33:55,844 WARN com.ververica.cdc.debezium.DebeziumSourceFunction [] - Consumer subtask 0 received confirmation for unknown checkpoint id 3

14:33:55,845 WARN com.ververica.cdc.debezium.DebeziumSourceFunction [] - Consumer subtask 0 received confirmation for unknown checkpoint id 3

14:33:55,845 WARN com.ververica.cdc.debezium.DebeziumSourceFunction [] - Consumer subtask 0 received confirmation for unknown checkpoint id 3然后一直提示这个。


参考回答:

从日志中可以看出,Flink CDC 在尝试注册指标时遇到了问题。这可能是由于指标名称已经存在导致的。你可以尝试以下方法解决这个问题:

  1. 检查你的 Flink CDC 配置,确保没有重复的指标名称。如果有重复的名称,请修改其中一个以避免冲突。
  2. 如果问题仍然存在,你可以尝试重启 Flink CDC 和相关的 Flink 任务。这可能会解决由于指标名称冲突导致的问题。
  3. 如果以上方法都无法解决问题,你可以考虑使用其他指标系统(如 Prometheus)来收集 Flink CDC 的指标,而不是使用默认的指标系统。这样可以避免指标名称冲突的问题。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/577373

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
786 43
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
282 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
7月前
|
存储 消息中间件 Kafka
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
806 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
|
3月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1751 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
4月前
|
存储 消息中间件 搜索推荐
京东零售基于Flink的推荐系统智能数据体系
摘要:本文整理自京东零售技术专家张颖老师,在 Flink Forward Asia 2024 生产实践(二)专场中的分享,介绍了基于Flink构建的推荐系统数据,以及Flink智能体系带来的智能服务功能。内容分为以下六个部分: 推荐系统架构 索引 样本 特征 可解释 指标 Tips:关注「公众号」回复 FFA 2024 查看会后资料~
337 1
京东零售基于Flink的推荐系统智能数据体系
|
8月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
8月前
|
消息中间件 关系型数据库 Kafka
阿里云基于 Flink CDC 的现代数据栈云上实践
阿里云基于 Flink CDC 的现代数据栈云上实践
157 1
|
3月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
481 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多