实时计算 Flink版产品使用合集之使用 MySQL CDC 进行数据同步时,设置 server_id 参数如何解决

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC中oralce cdc必须要在库级别开启ALTER DATABASE ADD 吗?


Flink CDC中oralce cdc必须要在库级别开启ALTER DATABASE ADD SUPPLEMENTAL LOG DATA吗?不能只执行ALTER TABLE inventory.customers ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;这个语句就可以吗?


参考回答:

在Flink CDC中,Oracle CDC需要使用ALTER DATABASE ADD SUPPLEMENTAL LOG DATA语句来开启日志数据。这个语句会在整个数据库级别添加补充日志数据,而不仅仅是在特定的表上。

如果你只想在特定的表上添加补充日志数据,可以使用ALTER TABLE语句,如你提到的:

ALTER TABLE inventory.customers ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

但是,这只会为inventory.customers表添加补充日志数据,而不是整个数据库。因此,如果你想在Oracle CDC中使用Flink CDC,你需要确保在整个数据库级别开启补充日志数据。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574894



问题二:Flink CDC如果binlog找不到配置的timestamp,任务是什么运行情况?


Flink CDC中mysql用timestamp启动,如果binlog找不到配置的timestamp,任务是什么运行情况?


参考回答:

在Flink CDC中,如果MySQL使用timestamp作为启动点,并且bin在Flink CDC中,如果MySQL使用timestamp作为启动点,并且binlog找不到配置的timestamp,任务将会以初始状态运行。

具体来说,当Flink CDC任务启动时,它会尝试从MySQL的binlog中找到指定的timestamp作为起始点。如果找不到该timestamp,Flink CDC会认为没有可用的数据,因此不会进行任何消费操作。

在这种情况下,Flink CDC任务将处于初始状态,等待找到合适的起始点。一旦找到了匹配的timestamp,任务将会开始消费数据并进行处理。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574893



问题三:Flink CDC中pg支持 scan.newly-added-table.enabled=true ?


Flink CDC中pg支持 scan.newly-added-table.enabled=true ?


参考回答:

是的,Flink CDC支持在pg中启用scan.newly-added-table.enabled=true选项。这个选项可以用于扫描新添加的表,以便Flink CDC能够捕获这些新表的数据变更。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574892



问题四:flink sql cdc数据统计


Flink sql cdc做实时数据统计的时候,我想统计当天的数据。加了时间过滤条件,但是每到第二天还是会把之前的数据加上,要重启一次任务才会对,这种应该怎么处理呢?


参考回答:

这个问题可能是因为你的Flink SQL CDC任务在处理时间过滤条件时,没有正确地处理时间的边界。为了解决这个问题,你可以尝试以下步骤:

  1. 检查时间过滤条件的定义:确保你的时间过滤条件正确地定义了每天的开始和结束。例如,你可以使用CURRENT_DATE函数来获取当前日期的开始,然后加上一天的间隔来计算第二天的开始。
  2. 使用时间窗口:在Flink中,你可以使用时间窗口来处理时间序列数据。例如,你可以定义一个一天的时间窗口,然后使用这个窗口来处理每天的数据。
  3. 使用事件时间:在Flink中,你可以使用事件时间来处理时间序列数据。事件时间是每个事件发生的实际时间,而不是每个事件被处理的时间。通过使用事件时间,你可以确保你的任务在处理数据时,总是按照事件发生的实际时间进行处理。
  4. 检查任务的启动方式:如果你的任务是通过Crond或者其他定时任务的方式启动的,那么你需要确保每次任务启动时,都会从最新的数据开始处理。否则,你的任务可能会在处理昨天的数据之后,又重新开始处理今天的数据。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574330



问题五:Flink CDC中mysql cdc 的那个server_id 设置的话,一般是怎么设置的?


Flink CDC中mysql cdc 的那个server_id 设置的话,一般是怎么设置的来,我设置 44200 报超出范围了,这个的设置范围不太了解?


参考回答:

在 Flink CDC 中使用 MySQL CDC 进行数据同步时,需要设置 server_id 参数来唯一标识 MySQL 实例。下面是一些常见的设置方法:

  1. 随机生成:可以生成一个随机的 server_id 值,确保每个 MySQL 实例都有不同的值。可以使用以下语句生成一个 4 字节的随机整数:
SELECT FLOOR(RAND() * POWER(2, 32)) AS server_id;
  1. 手动指定:手动指定一个唯一的 server_id 值。确保每个 MySQL 实例都使用不同的值,范围为 1 到 2^32-1。
  2. 使用 IP 地址:将 MySQL 实例的 IP 地址转换为整数,并用作 server_id 值。这样可以确保每个实例都有不同的 server_id,但需要注意当 IP 地址发生变化时,可能需要更新相应的 server_id

无论您选择哪种方法,都要确保每个 MySQL 实例的 server_id 值是唯一的,以避免冲突和数据同步问题。

在配置 Flink CDC 的 MySQL CDC 连接参数时,将所选的 server_id 值传递给 debezium.snapshot.server-id 参数即可,例如:

database.server.name: my-server
debezium.snapshot.server-id: 12345678


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/574299

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
22天前
|
关系型数据库 MySQL Linux
Linux系统如何设置自启动服务在MySQL数据库启动后执行?
【10月更文挑战第25天】Linux系统如何设置自启动服务在MySQL数据库启动后执行?
67 3
|
22天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
65 2
|
1月前
|
关系型数据库 MySQL 数据库
使用Docker部署的MySQL数据库如何设置忽略表名大小写?
【10月更文挑战第1天】使用Docker部署的MySQL数据库如何设置忽略表名大小写?
161 1
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
4月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
824 7
阿里云实时计算Flink在多行业的应用和实践
|
20天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
744 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
3月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
17天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
8天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
34 0
|
1月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
67 1

相关产品

  • 实时计算 Flink版
  • 下一篇
    无影云桌面