实时计算 Flink版产品使用合集之MongoDB CDC无法读取到变更流的原因是什么

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC中mysql cdc全量阶段可以多并行度云行,并行度是单并行度还是多并行度呀?


Flink CDC中mysql cdc全量阶段可以多并行度云行,全量转增量后,并行度是单并行度还是多并行度呀?


参考回答:

在Flink CDC中,MySQL CDC库在全量阶段可以使用多个并行度进行处理。这意味着可以将全量数据的抽取和处理任务划分为多个并行的子任务,从而提高全量阶段的处理速度。

然而,在全量转增量后,CDC任务会以单个并行度运行。这是因为增量阶段需要保证事件的顺序,并确保每个事件都被正确处理,这就要求整个增量阶段只能以单个并行度进行处理。

具体来说,在全量阶段,可以通过调整Flink任务的并行度参数来增加或减少并行度。一般来说,增加并行度可以提高全量数据的抽取速度,但也需要考虑到数据库的负载和资源消耗等因素。

在增量阶段,由于需要维持事件顺序和数据一致性,无法使用多个并行度。这是因为并行度可能导致事件顺序混乱,从而影响数据的正确性和一致性。

因此,在Flink CDC中,全量阶段可以采用多个并行度进行处理,而增量阶段则以单个并行度运行,以保证事件的有序处理。

需要注意的是,适当的并行度设置应根据具体情况进行评估和选择,包括系统资源、数据库负载、数据量和处理需求等因素。在实际使用中,建议进行充分的测试和性能调优,以找到最佳的并行度设置。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575287



问题二:Flink CDC中mongo版本4.4,cdc胖包版本2.4.2,按照文档里这么配置的?


Flink CDC中mongo版本4.4,cdc胖包版本2.4.2,按照文档里这么配置的?

mongodb集群1主1从CREATE TABLE ods_common_db.realtime_sync_logs(

_id STRING PRIMARY KEY NOT ENFORCED,

level STRING ,

loggerName STRING ,

message STRING ,

threadId BIGINT ,

threadName STRING ,

threadPriority INT ,

millis BIGINT ,

date TIMESTAMP ,

contextMap STRING ,

contextStack STRING ,

additionalFields STRING ,

_idc_update_time BIGINT ,

_idc_migrate_type STRING

) WITH (

'connector' = 'mongodb-cdc'

, 'hosts' = 'xxxx'

, 'username' = 'xxxx'

, 'password' = 'xxxxx'

, 'database' = 'xxxxx'

, 'collection' = 'xxxxx'

)用flinksql的


参考回答:

CREATE TABLE ods_common_db.realtime_sync_logs(
_id STRING PRIMARY KEY NOT ENFORCED,
level STRING ,
loggerName STRING ,
message STRING ,
threadId BIGINT ,
threadName STRING ,
threadPriority INT ,
millis BIGINT ,
date TIMESTAMP ,
contextMap STRING ,
contextStack STRING ,
additionalFields STRING ,
_idc_update_time BIGINT ,
_idc_migrate_type STRING
) WITH (
'connector' = 'mongodb-cdc',
'hosts' = 'xxxx',
'username' = 'xxxx',
'password' = 'xxxxx',
'database' = 'xxxxx',
'collection' = 'xxxxx'
);


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575286



问题三:Flink CDC中mongo cdc貌似没有读取到变更流,要怎么处理?


Flink CDC中mongo cdc貌似没有读取到变更流,要怎么处理?


参考回答:

如果您在使用 Flink CDC 的 MongoDB Connector 时遇到问题,导致无法读取到变更流,请尝试以下解决方法:

  1. 检查 MongoDB 配置:确保您的 MongoDB 实例已正确配置开启了 Change Streams 功能。Change Streams 是 MongoDB 提供的用于捕获数据变更的功能,它是 Flink CDC MongoDB Connector 读取增量数据的基础。
  2. 检查 CDC 配置:确保您在 Flink CDC 配置中正确设置了 MongoDB 相关参数,例如连接字符串、数据库名称、集合名称等。特别注意检查是否启用了 mongodb.start.from.earliest.offset 参数,该参数可以确保从最早的变更开始读取数据。
  3. 检查权限和认证:验证连接 MongoDB 的用户是否具有足够的权限来访问 Change Streams。需要确保用户具备 local.oplog.rsconfig.system.sessions 的访问权限。
  4. 检查网络和连接性:确保 Flink CDC 所在的机器能够正常连接到 MongoDB,并且网络通畅。同时,也需要确保 MongoDB 实例所在的机器对外部连接开放了相应的端口。
  5. 检查日志和错误信息:查看 Flink CDC 的日志文件以及可能产生的错误信息,这些信息可能会提供有关无法读取变更流的更详细的原因和故障排除线索。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575285



问题四:linkcdc监控mysql,结果现在原来的mysql库打不开?


flinkcdc监控mysql,我改了root的host(host原来是%),我改为了我的公网ip,结果现在原来的mysql库打不开?


参考回答:

如果你修改了MySQL的root主机(host)为你的公网IP,并且原来的MySQL库无法打开,可能是由于以下原因:

  1. 防火墙设置:检查MySQL服务器上的防火墙设置,确保允许来自公网IP的连接。你可能需要添加一个规则来允许特定的IP地址或端口访问MySQL。
  2. 网络配置:确保你的公网IP可以正确连接到MySQL服务器。你可以尝试使用telnet命令或其他网络工具来测试与MySQL服务器的连接。例如,在命令行中运行以下命令:telnet <你的公网IP> 3306,如果连接成功,则表示网络连接正常。
  3. MySQL用户权限:检查MySQL中的用户权限设置,确保具有适当的权限来访问数据库。特别是,确保root用户具有从任何主机连接到MySQL的权限。你可以使用以下命令查看用户的权限设置:SHOW GRANTS FOR 'root'@'%';。如果需要,可以使用GRANT语句更改用户的权限。
  4. MySQL配置:检查MySQL的配置文件(通常是my.cnf或my.ini),并确保其中的设置正确。特别关注bind-address参数,它指定了MySQL监听的IP地址。将其设置为"0.0.0.0"将允许来自任何主机的连接。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575284



问题五:Flink CDC这个智能调优,也是保存savepoint,然后指定新的内存参数,重启一下吗?


Flink CDC这个智能调优,也是保存savepoint,然后指定新的内存参数,重启一下吗?


参考回答:

Flink CDC的智能调优可以通过保存savepoint,然后指定新的内存参数并重启来实现。具体步骤如下:

  1. 首先,使用Flink CDC连接器读取数据源,并将数据流转换为Flink程序。
  2. 在运行过程中,可以使用checkpoint()方法定期创建savepoint。这些savepoint可以用于后续的恢复和调试。
  3. 当需要调整内存参数时,可以在创建savepoint之后,修改Flink程序的内存配置参数,例如增加或减少并行度、调整缓冲区大小等。
  4. 然后,使用之前创建的savepoint来恢复Flink程序的状态。这样,Flink程序将从之前的savepoint处继续运行,而不是从头开始。
  5. 最后,重新启动Flink程序,它将使用新的内存参数进行运行。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/575283

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
3天前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
39 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
8天前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
186 1
Flink CDC + Hologres高性能数据同步优化实践
|
12天前
|
分布式计算 关系型数据库 MySQL
Flink CDC 3.3.0 发布公告
Flink CDC 3.3.0 发布公告
42 14
|
12天前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
|
12天前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
Flink CDC YAML:面向数据集成的 API 设计
|
5月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
1月前
|
存储 NoSQL MongoDB
数据库数据恢复—MongoDB数据库迁移过程中丢失文件的数据恢复案例
某单位一台MongoDB数据库由于业务需求进行了数据迁移,数据库迁移后提示:“Windows无法启动MongoDB服务(位于 本地计算机 上)错误1067:进程意外终止。”
|
3月前
|
存储 JSON NoSQL
学习 MongoDB:打开强大的数据库技术大门
MongoDB 是一个基于分布式文件存储的文档数据库,由 C++ 编写,旨在为 Web 应用提供可扩展的高性能数据存储解决方案。它与 MySQL 类似,但使用文档结构而非表结构。核心概念包括:数据库(Database)、集合(Collection)、文档(Document)和字段(Field)。MongoDB 使用 BSON 格式存储数据,支持多种数据类型,如字符串、整数、数组等,并通过二进制编码实现高效存储和传输。BSON 文档结构类似 JSON,但更紧凑,适合网络传输。
97 15
|
3月前
|
存储 NoSQL 关系型数据库
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
我们的风控系统引入阿里云数据库MongoDB版后,解决了特征类字段灵活加减的问题,大大提高了开发效率,极大的提升了业务用户体验,获得了非常好的效果
阿里云数据库MongoDB版助力信也科技 打造互联网金融企业样板
|
4月前
|
NoSQL Cloud Native atlas
探索云原生数据库:MongoDB Atlas 的实践与思考
【10月更文挑战第21天】本文探讨了MongoDB Atlas的核心特性、实践应用及对云原生数据库未来的思考。MongoDB Atlas作为MongoDB的云原生版本,提供全球分布式、完全托管、弹性伸缩和安全合规等优势,支持快速部署、数据全球化、自动化运维和灵活定价。文章还讨论了云原生数据库的未来趋势,如架构灵活性、智能化运维和混合云支持,并分享了实施MongoDB Atlas的最佳实践。

相关产品

  • 实时计算 Flink版