python 机器学习 sklearn——手把手教你预测心脏病

简介: python 机器学习 sklearn——手把手教你预测心脏病

流程

1.数据导入,清洗拆分

2.通过sklearn得到数据模型

3.开始预测(这里我们将用回归和决策树来进行预测)

前期准备

数据

心脏病数据下载

导包

```
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier

这里我们主要是sklearn的包,以及numpy,方便对于数据进行操作

数据操作

准备 样本数据 结果数据

最后一列是我们的结果,我们需要把我们的结果和各项身体数据进行分离

#删除最后一列  样本数据
features=heart_df.drop(columns=["target"])
#保存标签 结果数据
target=heart_df["target"]

切分训练集

我们的训练集合的比列以3:1最为合适,即学习数据75%,预测数据25%,在sklearn里面也会有专门的函数来采集样本

#切分训练集
X_train,X_test,Y_train,Y_test=train_test_split(features,target,test_size=0.25)

训练数据

逻辑回归

def test_logistic(*data):
    X_train, X_test, Y_train, Y_test=data
    clf=LogisticRegression()#逻辑回归
    clf.fit(X_test,Y_test)#梯度下降,递归
    print("学习模型预测成绩:{:.4f}".format(clf.score(X_train,Y_train)))
    print("实际模型预测成绩:{:.4f}".format(clf.score(X_test, Y_test)))

决策树

def test_decision_tree(*data):
    X_train, X_test, Y_train, Y_test = data
    clf=DecisionTreeClassifier(max_depth=3,criterion="entropy")
    clf.fit(X_train,Y_train)
    print("学习模型决策树预测成绩:{:.4f}".format(clf.score(X_train, Y_train)))
    print("实际模型决策树预测成绩:{:.4f}".format(clf.score(X_test, Y_test)))
    # decision_tree_pre=clf.predict(X_test)
    # print("decision_tree:",decision_tree_pre)
    # print("true lbel:",Y_test)
    return clf

结果

这样我们的预测就完成了,我们一起来看看结果吧

决策树的结果可以输出喔

总结

经过这一顿操作下来,我们一起再好好的总结一下,起始就是将我们的数据的取值情况和它的特征先分开,然后我们利用train_test_split去获得取值,然后直接使用clf函数来进行学习,再去对我们的结果获取成绩

相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
105 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
54 2
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
46 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
65 0
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
117 4
|
16天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
39 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
51 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络