【数据结构与算法 | 基础篇】模拟LinkedList实现的链表(无哨兵)

简介: 【数据结构与算法 | 基础篇】模拟LinkedList实现的链表(无哨兵)

1.前言

我们将LinkdList视作链表, 底层设计了内部类Node类, 我这里依然没有用到泛型, 其实加上泛型依然很简单, 即将Node节点的数据域的类型由Int转换为E(<E>), 我在此不做赘述.同时实现了增删查改, 遍历等操作.

2.链表(无哨兵)的代码实现

public class LinkListTest implements Iterable<Integer>{
    //头指针
    static Node head;
    //内部类
    private static class Node{
        //数据域
        int value;
        //指针域
        Node next;
        public Node(int value, Node nest) {
            this.value = value;
            this.next = nest;
        }
    }
    //头插法
    public void addHead(int value) {
        Node p = new Node(value, null);
        p.next = head;
        head = p;
    }
    //遍历链表 : 方式1
    public void Traversal1() {
        Node p = head;
        while (p != null) {
            System.out.println("该节点的值是" + p.value);
            p = p.next;
        }
    }
    //获取指定索引位置上的节点的值
    public int get(int index) {
        Node p = findIndex(index);
        return p.value;
    }
    //返回指定索引的节点
    private Node findIndex(int index) {
        int count = 0;
        Node p = head;
        while (count < index) {
            if (p == null) {
                throw new IllegalArgumentException();
            }
            p = p.next;
            count++;
        }
        return p;
    }
    //找到尾节点
    private Node findLast() {
        //如果是空链表, 压根找不到最后的节点
        if (head == null) {
            return null;
        }
        Node p;
        //当p.next == null时, 则p指向了尾节点
        for (p = head; p.next != null; p = p.next) {
            ;
        }
        return p;
    }
    //尾插法
    public void addLast(int value) {
        Node last = findLast();
        //如果是一个空链表
        if (last == null) {
            addHead(value);
            return;
        }
        last.next = new Node(value, null);
    }
    public void Insert(int index, int value) {
        //如果插入的是第一个节点
        if (index == 0) {
            addHead(value);
            return;
        }
        //先找到index位置处的前一个节点
        Node p = findIndex(index - 1);
        p.next = new Node(value, p.next);
    }
    //删除最后一个节点
    public void removeFrist() {
        //如果是空链表
        if (head == null) {
            throw new RuntimeException();
        }
        //找到头节点
        Node p = findIndex(0);
        head = p.next;
    }
    public void remove(int index) {
        //如果是空链表
        if (head == null) {
            throw new RuntimeException();
        }
        //如果要删除的是最后一个节点, 那么调用removeFrist()方法
        if (index == 0) {
            removeFrist();
            return;
        }
        Node p = findIndex(index - 1);
        p.next = p.next.next;
    }
 
 
    //使用迭代器进行遍历
    @Override
    public Iterator<Integer> iterator() {
        return new Iterator<Integer>() {
            Node q = head;
            @Override
            public boolean hasNext() {
                if (q != null) {
                    return true;
                }
                return false;
            }
 
            @Override
            public Integer next() {
                int value = q.value;
                q = q.next;
                return value;
            }
        };
 
    }
    //使用函数式接口进行链表的遍历
    public void Traverse2(Consumer<Integer> consumer) {
        for (Node p = head; p != null; p = p.next) {
            consumer.accept(p.value);
        }
    }
 
}
 

3. 注

  • foreach循环的底层使用了迭代器.所以如果一个类的对象想要使用foreach循环遍历,则其类必须实现Iterable接口,并重写其中的抽象方法(iterable()).在其return语句中实现了匿名内部类,重写了Iterator接口的两个重要的抽象方法,hasNext()和next().不断迭代将next函数返回的值赋值给临时变量element.
  • 在Traverse2方法中,我们使用了函数式接口来进行链表的遍历
public void Traverse2(Consumer<Integer> consumer) {
        for (Node p = head; p != null; p = p.next) {
            consumer.accept(p.value);
        }
    }
 
@Test
    public void test3() {
        LinkListTest l = new LinkListTest();
        l.addLast(12);
        l.addLast(23);
        l.addLast(34);
        l.addLast(45);
        l.addLast(56);
        l.addLast(67);
        l.Traverse2(value -> {
            System.out.println("该节点的值为" + value);
        });
        l.Traverse2(System.out :: println);
    }

形参是一个消费型的函数式接口,实参我们可以传入接口的实现类的对象(lambda表达式或者方法引用实现).

相关文章
|
1月前
|
算法
【❤️算法笔记❤️】-每日一刷-19、删除链表的倒数第 N个结点
【❤️算法笔记❤️】-每日一刷-19、删除链表的倒数第 N个结点
69 1
|
1月前
|
算法 索引
❤️算法笔记❤️-(每日一刷-141、环形链表)
❤️算法笔记❤️-(每日一刷-141、环形链表)
46 0
|
1月前
|
算法
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
44 0
|
1月前
|
算法
【❤️算法笔记❤️】-每日一刷-23、合并 K 个升序链表
【❤️算法笔记❤️】-每日一刷-23、合并 K 个升序链表
32 0
|
1月前
|
存储 算法
【❤️算法笔记❤️】-每日一刷-21、合并两个有序链表
【❤️算法笔记❤️】-每日一刷-21、合并两个有序链表
93 0
|
18天前
|
存储 Java 索引
Java中的数据结构:ArrayList和LinkedList的比较
【10月更文挑战第28天】在Java编程世界中,数据结构是构建复杂程序的基石。本文将深入探讨两种常用的数据结构:ArrayList和LinkedList,通过直观的比喻和实例分析,揭示它们各自的优势与局限,帮助你在面对不同的编程挑战时做出明智的选择。
|
21天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
21天前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
1月前
|
Java C++ 索引
让星星⭐月亮告诉你,LinkedList和ArrayList底层数据结构及方法源码说明
`LinkedList` 和 `ArrayList` 是 Java 中两种常见的列表实现。`LinkedList` 基于双向链表,适合频繁的插入和删除操作,但按索引访问元素效率较低。`ArrayList` 基于动态数组,支持快速随机访问,但在中间位置插入或删除元素时性能较差。两者均实现了 `List` 接口,`LinkedList` 还额外实现了 `Deque` 接口,提供了更多队列操作。
23 3
|
1月前
|
存储 缓存 索引
从底层数据结构和CPU缓存两方面剖析LinkedList的查询效率为什么比ArrayList低
本文详细对比了ArrayList和LinkedList的查询效率,从底层数据结构和CPU缓存两个方面进行分析。ArrayList基于动态数组,支持随机访问,查询时间复杂度为O(1),且CPU缓存对其友好;而LinkedList基于双向链表,需要逐个节点遍历,查询时间复杂度为O(n),且CPU缓存对其帮助不大。文章还探讨了CPU缓存对数组增删操作的影响,指出缓存主要作用于读取而非修改。通过这些分析,加深了对这两种数据结构的理解。
37 2

热门文章

最新文章

下一篇
无影云桌面