C语言进阶—自定义类型:结构体,枚举,联合

简介: C语言进阶—自定义类型:结构体,枚举,联合

1.结构体

1.结构体类型的声明

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

结构的声明,例如描述一个学生:名字,年龄,性别,学号等

struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
};//分号不能丢

注意:

struct Student

{

   char name[20];

   int age;

   char sex[5];

   float score;

} s1, s2, s3;//s1, s2, s3 是三个结构体变量 - 全局变量

但是

int main()

{

   struct Student s4, s5, s6;//s4, s5, s6 是三个结构体变量 - 局部变量

   return 0;

}

特殊的声明 ,在声明结构的时候,可以不完全的声明,称为匿名结构体;例如:下面的两个结构2在声明的时候省略掉了结构体标签(tag)。

//匿名结构体类型
struct
{
int a;
char b;
float c;
}x;
struct
{
int a;
char b;
float c;
}a[20], *p;

在上面代码的基础上,下面的代码合法吗?

p = &x;            警告: 编译器会把上面的两个声明当成完全不同的两个类型。 所以是非法的。

2.结构的自引用

正确自引用方式:

struct Node
{
int data;
struct Node* next;
};

特殊写法

typedef struct Node
{
  int data;//存放数据-数据域
  struct Node* n;//存放下一个节点的地址-指针域
}Node;

3.结构体变量的定义和初始化

如下代码定义结构体初始化

struct Point
{
  int x;
  int y;
}p1 = {1,2};//声明类型的同时定义变量p1
 
struct Point p3 = {4,5};//初始化:定义变量的同时赋初值
 
struct Stu//类型声明
{
  char name[15];//名字
  int age;
};
 
struct Node
{
  int data;
  struct Point p;
  struct Node* next;
};
 
int main()
{
  int a = 10;
  int b = 20;
  struct Point p2 = {a, b};
  struct Stu s = { "zhangsan", 20 };
  struct Stu s2 = { .age=18, .name="如花"};
  printf("%s %d\n", s.name, s.age);
  printf("%s %d\n", s2.name, s2.age);
  struct Node n = { 100, {20, 21}, NULL };//嵌套初始化
  printf("%d x=%d y=%d\n", n.data, n.p.x, n.p.y);
  return 0;
}

image.png

4.结构体内存对齐

思考

image.png

为什么结构体,S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别呢?

计算结构体的大小

首先得掌握结构体的对齐规则

1.第一个成员在与结构体变量偏移量为0的地址处。

2.其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。

对齐数=编译器默认的个对齐数与该成员大小的较小值。

   VS中默认的值为8


 Linux中没有默认对齐数,对齐数就是成员自身的大小

 Linux 境中gcci个编译器是没有默认对齐数的

3.结构体总大小为最大对齐数(每个成员变量都有一个对齐数,最大对齐数即为该结构体中各个对齐数相比较的最大值)的整数倍。

4.如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整

体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

例如

struct S3
{
  double d;
  char c;
  int i;
};
 
struct S4
{
  char c1;
  struct S3 s3;
  double d;
};
 
int main()
{
  printf("%d\n", sizeof(struct S3));
  printf("%d\n", sizeof(struct S4));
 
  return 0;
}

image.png

内存对齐分析

image.png

为什么存在内存对齐?

大部分的参考资料都是如是说的:

1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。


总体来说:结构体的内存对齐是拿空间来换取时间的做法

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起呢?

例如:

struct S1
{
char c1;
int i;
char c2;
};
struct S2
{
char c1;
char c2;
int i;
};

S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别

那么我们就要     修改默认对齐数

之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

例如:

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
  //输出的结果是什么?
  printf("%d\n", sizeof(struct S1));
  printf("%d\n", sizeof(struct S2));
  return 0;
}

image.png

5.结构体传参

有传值调用和传址调用两种,

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。

如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能

的下降。

结论: 结构体传参的时候,要传结构体的地址。

代码示例如下:

struct S
{
  int data[1000];
  int num;
};
 
void print1(struct S t)
{
  printf("%d %d %d %d\n", t.data[0], t.data[1], t.data[2], t.num);
}
 
void print2(const struct S * ps)
{
  printf("%d %d %d %d\n", ps->data[0], ps->data[1], ps->data[2], ps->num);
}
 
int main() 
{
  struct S s = { {1,2,3}, 100 };
  print1(s);//传值调用
  print2(&s);//传址调用
 
  return 0;
}

6.结构体实现位段(位段的填充&可移植性)

位段的出现是为了节省空间

位段的声明和结构是类似的,有两个不同:

1.位段的成员必须是 int、unsigned int 或signed int 。

2.位段的成员名后边有一个冒号和一个数字,数字表示开辟的空间为几个Bit位

比如:

struct A
{
int _a:2;
int _b:5;
int _c:10;
int _d:30;
};

image.png

位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char (属于整形家族)类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

image.png

为什么为三个字节呢?

image.png

位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。

2. 位段中最大位的数目不能确定。(16位机器最大16bit位,32位机器最大4个字节即为32bit位,写成27,在16位机器会出问题。

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在

位段的应用

image.png

2.枚举

枚举顾名思义就是一一列举。

把可能的取值一一列举。

比如我们现实生活中:

一周的星期一到星期日是有限的7天,可以一一列举。

性别有:男、女、保密,也可以一一列举。

月份有12个月,也可以一一列举

1.枚举类型的定义—enum

enum Day//星期
{
Mon,
Tues,
Wed,
Thur,
Fri,
Sat,
Sun
};
enum Sex//性别
{
MALE,
FEMALE,
SECRET
};
enum Color//颜色
{
RED,
GREEN,
BLUE
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。

{}中的内容是枚举类型的可能取值,也叫 枚举常量 。

这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值

但是它的值是固定的不能更改的

image.png

2.枚举的优点

为什么使用枚举?

我们可以使用 #define 定义常量,为什么非要使用枚举?

枚举的优点:

1. 增加代码的可读性和可维护性

2. 和#define定义的标识符比较枚举有类型检查,更加严谨。

3. 防止了命名污染(封装)

4. 便于调试

5. 使用方便,一次可以定义多个常量

3.枚举的使用

只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。

不能    clr = 5;

enum Color//颜色
{
RED=1,
GREEN=2,
BLUE=4
};
enum Color clr = GREEN;//只能拿枚举常量给枚举变量赋值,才不会出现类型的差异。

3.联合

1.联合类型的定义

联合也是一种特殊的自定义类型 这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。

//联合类型的声明
union Un
{
char c;
int i;
};
//联合变量的定义
union Un un;
//计算连个变量的大小
printf("%d\n", sizeof(un));

2.联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为

联合至少得有能力保存最大的那个成员)。

union Un
{
int i;
char c;
};
union Un un;
// 下面输出的结果是一样的吗?
printf("%d\n", &(un.i));
printf("%d\n", &(un.c));
//下面输出的结果是什么?
un.i = 0x11223344;
un.c = 0x55;
printf("%x\n", un.i);

image.png

例如:判断当前计算机的大小端存储

int check_sys()
{
  union
  {
    char c;
    int i;
  }u;
 
  u.i = 1;
  return u.c;//返回1表示小端,返回0表示大端
}
 
int main()
{
  int ret = check_sys();
  if (ret == 1)
    printf("小端\n");
  else
    printf("大端\n");
 
  return 0;
}

3.联合大小的计算

联合的大小至少是最大成员的大小。

当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍

比如:

image.png

image.png

联合体什么时候使用?

某些成员不会在同一时间使用

图书:库存量、价格、商品类型书名、作者、页数

杯子:库存量、价格、商品类型,设计

衬衫:库存量、价格、商品类型没计、可选颜色、可选尺

image.png

以上数据可综合为

image.png

相关文章
|
1月前
|
存储 网络协议 编译器
【C语言】深入解析C语言结构体:定义、声明与高级应用实践
通过根据需求合理选择结构体定义和声明的放置位置,并灵活结合动态内存分配、内存优化和数据结构设计,可以显著提高代码的可维护性和运行效率。在实际开发中,建议遵循以下原则: - **模块化设计**:尽可能封装实现细节,减少模块间的耦合。 - **内存管理**:明确动态分配与释放的责任,防止资源泄漏。 - **优化顺序**:合理排列结构体成员以减少内存占用。
142 14
|
1月前
|
存储 编译器 C语言
【C语言】结构体详解 -《探索C语言的 “小宇宙” 》
结构体通过`struct`关键字定义。定义结构体时,需要指定结构体的名称以及结构体内部的成员变量。
173 10
|
2月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
173 13
|
2月前
|
存储 数据建模 程序员
C 语言结构体 —— 数据封装的利器
C语言结构体是一种用户自定义的数据类型,用于将不同类型的数据组合在一起,形成一个整体。它支持数据封装,便于管理和传递复杂数据,是程序设计中的重要工具。
|
2月前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
76 11
|
C语言
《C语言及程序设计》实践项目——枚举应用
返回:贺老师课程教学链接 【项目1-对称点】 设计函数,可以按指定的方式,输出一个平面点的对称点 下面给出枚举类型定义和main函数(测试函数),请写出output函数的实现。 #include&lt;stdio.h&gt; enum SymmetricStyle {axisx, axisy, point};//分别表示按x轴, y轴, 原点对称三种方式 void
1099 0
|
1月前
|
存储 C语言 开发者
【C语言】字符串操作函数详解
这些字符串操作函数在C语言中提供了强大的功能,帮助开发者有效地处理字符串数据。通过对每个函数的详细讲解、示例代码和表格说明,可以更好地理解如何使用这些函数进行各种字符串操作。如果在实际编程中遇到特定的字符串处理需求,可以参考这些函数和示例,灵活运用。
70 10
|
1月前
|
存储 程序员 C语言
【C语言】文件操作函数详解
C语言提供了一组标准库函数来处理文件操作,这些函数定义在 `<stdio.h>` 头文件中。文件操作包括文件的打开、读写、关闭以及文件属性的查询等。以下是常用文件操作函数的详细讲解,包括函数原型、参数说明、返回值说明、示例代码和表格汇总。
53 9
|
1月前
|
存储 Unix Serverless
【C语言】常用函数汇总表
本文总结了C语言中常用的函数,涵盖输入/输出、字符串操作、内存管理、数学运算、时间处理、文件操作及布尔类型等多个方面。每类函数均以表格形式列出其功能和使用示例,便于快速查阅和学习。通过综合示例代码,展示了这些函数的实际应用,帮助读者更好地理解和掌握C语言的基本功能和标准库函数的使用方法。感谢阅读,希望对你有所帮助!
44 8
|
1月前
|
C语言 开发者
【C语言】数学函数详解
在C语言中,数学函数是由标准库 `math.h` 提供的。使用这些函数时,需要包含 `#include <math.h>` 头文件。以下是一些常用的数学函数的详细讲解,包括函数原型、参数说明、返回值说明以及示例代码和表格汇总。
53 6