从新能源汽车行业自动驾驶技术去看AI的发展未来趋势

简介: 从新能源汽车行业自动驾驶技术去看AI的发展未来趋势

自动驾驶汽车关键技术主要包括环境感知精准定位决策与规划控制与执行高精地图车联网V2X以及自动驾驶汽车测试验证技术等。


🐓 自动驾驶技术

这是AI在汽车行业中应用最广泛的领域之一。自动驾驶技术利用AI算法传感器来感知环境识别障碍物并进行自主决策驾驶操作。通过实现车辆的自动驾驶,可以提高行车安全性、减少交通事故的发生,同时降低驾驶员的工作负担。


自动驾驶,在21世纪已有数十年的历史,但自动驾驶行业在当时还没有受到广泛关注。1999年,美国卡耐基梅隆大学研制的无人驾驶汽车Naclab-V完成了第一次无人驾驶试验,许多为无人车开放道路实验的法律法规也相继出台。经过开发研制, 自动驾驶在后续几年被推广,2009年,自动驾驶汽车的雏形图片被曝光,自动驾驶开始受到关注。


自动监视应用的不同级别

无人驾驶技术级别通常按照SAE国际标准分为6个级别,从级别0到级别5,分别代表了不同程度的自动化水平。这些级别包括:

级别0无自动化,完全由人类驾驶

级别1辅助驾驶,车辆可以执行某些任务,但仍需要人类驾驶员监控

级别2部分自动化,车辆可以执行加速、刹车、转向等任务,但驾驶员需要保持警惕并随时准备接管控制

级别3有条件自动化,车辆可以在特定条件下执行所有驾驶任务,但需要在需要时要求驾驶员接管控制

级别4高度自动化,车辆可以在大多数情况下自主执行驾驶任务,但在某些特殊情况下需要人类介入

级别5完全自动化,车辆能够在所有情况下自主执行驾驶任务,无需人类干预

9c5c207b5ef44bfd8c7af45329f1b8c2.png


8c1dd8ffca8443ebab5e065b6e0c3d2e.png

🐓 汽车组成

控制电脑自动驾驶技术的内容包括定位与路径规划、环境感知、行为决策与控制。即通过CPS与计算机技术的协作,进行航线的确定,并通过传感器感知环境,由控制电脑处理具体事件与总体航行。

05674fea8d2c44f5a4a32d7c0176c0b5.png

在道路行驶中,电脑的功能就是依据庞大的数据库来辨识出周围的环境元素,再做出相应的对策。电脑由此可以像人类驾驶员一样,在适当的时候发出指令来提速、减速、转向,以做到躲避障碍,保持在车道内行驶,识别出道路上的交通指示信号如限速牌指示、红绿信号灯等。

过往的自动驾驶技术突破困难,重要的因素就是人工智能的发展速度过慢,过去人们以为是算法的落后,现在人工智能深度学习法其实更早就已经提出了,比如现在其中以Dijkstra算法为代表的图搜索法在各种优化问题中得到了较为广泛的应用,且这种算法是全局最优的 。但过去的计算机由于容量小,运行速度慢,这种穷举式的算法又需要大量数据的运算,现在计算机本身的性能得到大幅度提高,大数据技术的发展,深度学习的高效性才得以体现。

高性能计算机的重要性不仅体现在实际应用阶段,也体现载实验阶段借此来推动人工智能技术的进步。

476a6cef547143d190d3805fe39d56ee.png

中央处理器

中央处理器包括运算器、控制部件和寄存器等,是整个自动驾驶汽车的核心组成部分,对收集到的各种信息进行汇总与处理,包括信息的输入,信息处理与信息的输出。


视频采集器

视频采集器是将收集到的视频信号混合输入电脑,并转换成电脑可识别的数字数据,储存于电脑中。


雷达传感器

雷达传感器是一种用于测量距离的仪器,通过测量参数距离,利用发射频率与时间的相关函数,得到平均值,根据计算公式可以得到与物体间的距离。

73fcc6548e9f4decaab92ed97c0944e5.png

276dc0d7dacf4dabafbae7cf84b3b62e.png

01b8aa351fd24d56992e6ae8bd47fc0a.png

🐓 技术难题

如何改善精度

IMU是一种惯性测量手段,通过计算加速度和速度获得准确定位,这项技术的更新频率较高,但是实时定位会存在误差积累


处理数据时间

如果自动驾驶汽车以100千米/时的速度高速行驶时,留给中央处理器处理数据的时间极短,这需要中央处理器有极高的性能,目前的激光雷达也尚无成熟的量产产品,这就会使自动驾驶汽车不能在遇到危险的情况下快速反应,有造成事故的概率。


法律问题

随着自动驾驶汽车的上路普及,事故责任界定是重要课题,世界范围内既有法律对该问题均没有明文规定 。想要自动驾驶汽车真正在路上行驶,还要公安部、交通部等各个部门一致,不断完善法律


🐓 互联网技术不断促进自动驾驶技术

一方面,在人工智能、大数据等新一代信息技术领域的先天技术优势,能够快速应用到自动驾驶中,促进技术升级;

另一方面,其能够更加快速整合跨行业信息、金融、人才等资源,促进自动驾驶的快速推广与创新应用

未来一定会在互联网技术的发展会更加完善

目录
打赏
0
0
0
0
23
分享
相关文章
构建可落地的企业AI Agent,背后隐藏着怎样的技术密码?
三桥君深入解析企业AI Agent技术架构,涵盖语音识别、意图理解、知识库协同、语音合成等核心模块,探讨如何实现业务闭环与高效人机交互,助力企业智能化升级。
66 6
AI量化交易软件开发技术逻辑
AI量化交易融合人工智能与量化分析,通过算法模型深度解析市场数据,自动生成并执行交易策略,显著提升交易效率与决策精准度。其开发涵盖目标分析、数据处理、算法设计、系统构建、测试优化、合规安全及持续迭代等多个关键环节,涉及金融、编程、大数据与AI等多领域技术。掌握这些核心技术,方能打造高效智能的量化交易系统,助力投资者实现更优收益。
16个AI Logo 设计工具大盘点:技术解析、Logo格式对比与实用推荐
本文介绍了品牌标志(Logo)的重要性,并盘点了多款免费且好用的 Logo 生成工具,分析其输出尺寸、格式及适用场景,帮助无设计基础的用户选择合适工具,高效制作满足不同用途的 Logo。
72 0
AI时代,Apipost和Apifox如何利用AI技术赋能API研发测试管理所需?
在数字化转型加速背景下,API成为企业互联互通的关键。Apipost与Apifox作为主流工具,在AI赋能方面差异显著。Apipost通过智能参数命名、接口设计自动化、测试用例生成、断言自动化等功能大幅提升研发效率和质量,尤其适合中大型企业及复杂业务场景。相比之下,Apifox功能依赖手动操作较多,适用性更偏向初创或小型项目。随着AI技术发展,Apipost展现出更强的智能化与前瞻性优势,为企业提供高效、稳定的API管理解决方案,助力其在竞争激烈的市场中实现创新突破。
48 0
让AI时代的卓越架构触手可及,阿里云技术解决方案开放免费试用
阿里云推出基于场景的解决方案免费试用活动,新老用户均可领取100点试用点,完成部署还可再领最高100点,相当于一年可获得最高200元云资源。覆盖AI、大数据、互联网应用开发等多个领域,支持热门场景如DeepSeek部署、模型微调等,助力企业和开发者快速验证方案并上云。
952 39
让AI时代的卓越架构触手可及,阿里云技术解决方案开放免费试用
解决AI大难题:如何降低AI运行对能源的消耗?
就当下来看,AI领域实现突破性进展的深度学习模型,其规模越大,能耗和成本也随之增加。自然语言处理模型GPT-3就是个典型的例子,为了能够在准确性与速度方面与人类相匹敌,该模型包含1750亿个参数、占用350 GB内存并产生高达1200万美元的模型训练成本。
776 0
解决AI大难题:如何降低AI运行对能源的消耗?
真·零门槛!原来手搓AI应用这么简单
这是一篇关于如何创作小红书爆款文案的专业指南,涵盖标题技巧、正文结构、情绪表达及关键词运用。内容包括高吸引力标题公式、正文六种开篇模板、关键词库和写作规则,帮助用户高效打造高转化文案。
Open WebUI 和 Dify 在构建企业AI应用时的主要区别
本文对比了企业AI应用构建中的两大开源工具——Open WebUI与Dify,在技术架构、核心能力及适用场景方面的差异。Open WebUI适合轻量级对话场景,侧重本地部署与基础功能;而Dify则聚焦复杂业务流程,提供可视化工作流编排与端到端RAG支持。文章结合典型用例与落地建议,助力企业合理选型并实现高效AI集成。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问