Python进阶---FastAPI框架

简介: Python进阶---FastAPI框架

一、FastAPI框架

1. 什么是FastAPI

FastAPI是一个现代的,快速(高性能)python web框架. 基于标准的python类型提示,使用python3.6+构建API的Web框架.

简单讲FastAPI就是把做web开发所需的相关代码全部简化, 我们不需要自己实现各种复杂的代码, 例如多任务,路由装饰器等等. 只需要调用FastAPI提供给我们的函数, 一调用就可以实现之前需要很多复杂代码才能实现的功能.

FastAPI的特点


· 性能快:高性能,可以和NodeJS和Go相提并论

· 快速开发:开发功能速度提高约200%至300%

· 更少的Bug:

· Fewer bugs: 减少40%开发人员容易引发的错误

· 直观:完美的编辑支持

· 简单: 易于使用和学习,减少阅读文档的时间

· 代码简洁:很大程度上减少代码重复。每个参数可以声明多个功能,减少bug的发生

· 标准化:基于并完全兼容API的开发标准:OpenAPI(以前称为Swagger)和JSON Schema

搭建环境


python环境:Python 3.6+

fastapi安装


安装方式1:


安装fastapi

pip install fastapi

如果用于生产,那么你还需要一个ASGI服务器,如Uvicorn或Hypercorn

pip install uvicorn

安装方式2 :


1) 选择File->Settings


2)选择对应项目的Project Interpreter -> 选择pygame(可以输入pygame进行搜索,节省时间) -> install package按钮 -> 等待项目安装pygame 包完成(可能需要几分钟到十几分钟)-> 返回后如果有pygame package信息,则说明项目配置成功


2. FastAPI的基本使用

功能需求:


搭建服务器

返回html页面

基本步骤:


导入模块

创建FastAPI框架对象

通过@app路由装饰器收发数据

运行服务器

代码实现:

# 导入FastAPI模块
from fastapi import FastAPI
# 导入响应报文Response模块
from fastapi import Response
# 导入服务器uvicorn模块
import uvicorn
 
# 创建FastAPI框架对象
app = FastAPI()
 
 
# 通过@app路由装饰器收发数据
# @app.get(参数) : 按照get方式接受请求数据
# 请求资源的 url 路径
@app.get("/index.html")
def main():
    with open("source/html/index.html") as f:
        data = f.read()
    # return 返回响应数据
    # Response(content=data, media_type="text/html"
    # 参数1: 响应数据
    # 参数2: 数据格式
    return Response(content=data, media_type="text/html")
 
 
# 运行服务器
# 参数1: 框架对象
# 参数2: IP地址
# 参数3: 端口号
uvicorn.run(app, host="127.0.0.1", port=8000)

3. 通过FastAPI访问多个指定网页

  • 路由装饰器的作用:
  • 实际上通过路由装饰器我们就可以让一个网页应一个函数, 也就可以实现访问指定网页了.
# 导入FastAPI模块
from fastapi import FastAPI
# 导入响应报文Response模块
from fastapi import Response
# 导入服务器uvicorn模块
import uvicorn
 
# 创建FastAPI框架对象
app = FastAPI()
 
 
# 通过@app路由装饰器收发数据
# @app.get(参数) : 按照get方式接受请求数据
# 请求资源的 url 路径
@app.get("/index1.html")
def main():
    with open("source/html/index1.html") as f:
        data = f.read()
    # return 返回响应数据
    # Response(content=data, media_type="text/html"
    # 参数1: 响应数据
    # 参数2: 数据格式
    return Response(content=data, media_type="text/html")
 
 
@app.get("/index2.html")
def main():
    with open("source/html/index2.html") as f:
        data = f.read()
    # return 返回响应数据
    # Response(content=data, media_type="text/html"
    # 参数1: 响应数据
    # 参数2: 数据格式
    return Response(content=data, media_type="text/html")
 
 
# 运行服务器
# 参数1: 框架对象
# 参数2: IP地址
# 参数3: 端口号
uvicorn.run(app, host="127.0.0.1", port=8000)
目录
相关文章
|
1月前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
22天前
|
人工智能 开发者 Python
Chainlit:一个开源的异步Python框架,快速构建生产级对话式 AI 应用
Chainlit 是一个开源的异步 Python 框架,帮助开发者在几分钟内构建可扩展的对话式 AI 或代理应用,支持多种工具和服务集成。
137 9
|
1月前
|
JSON 安全 中间件
Python Web 框架 FastAPI
FastAPI 是一个现代的 Python Web 框架,专为快速构建 API 和在线应用而设计。它凭借速度、简单性和开发人员友好的特性迅速走红。FastAPI 支持自动文档生成、类型提示、数据验证、异步操作和依赖注入等功能,极大提升了开发效率并减少了错误。安装简单,使用 pip 安装 FastAPI 和 uvicorn 即可开始开发。其优点包括高性能、自动数据验证和身份验证支持,但也存在学习曲线和社区资源相对较少的缺点。
84 15
|
1月前
|
关系型数据库 API 数据库
Python流行orm框架对比
Python中有多个流行的ORM框架,如SQLAlchemy、Django ORM、Peewee、Tortoise ORM、Pony ORM、SQLModel和GINO。每个框架各有特点,适用于不同的项目需求。SQLAlchemy功能强大且灵活,适合复杂项目;Django ORM与Django框架无缝集成,易用性强;Peewee轻量级且简单,适合小型项目;Tortoise ORM专为异步框架设计;Pony ORM查询语法直观;SQLModel结合Pydantic,适合FastAPI;GINO则适合异步环境开发。初学者推荐使用Django ORM或Peewee,因其易学易用。
|
1月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
80 7
|
2月前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
96 7
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
116 2
|
2月前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
3月前
|
缓存 API 数据库
Python哪个框架合适开发速卖通商品详情api?
在跨境电商平台速卖通的商品详情数据获取与整合中,Python 语言及其多种框架(如 Flask、Django、Tornado 和 FastAPI)提供了高效解决方案。Flask 简洁灵活,适合快速开发;Django 功能全面,适用于大型项目;Tornado 性能卓越,擅长处理高并发;FastAPI 结合类型提示和异步编程,开发体验优秀。选择合适的框架需综合考虑项目规模、性能要求和团队技术栈。
44 2
|
6月前
|
测试技术 索引 Python
Python接口自动化测试框架(练习篇)-- 数据类型及控制流程(一)
本文提供了Python接口自动化测试中的编程练习,包括计算器、猜数字、猜拳和九九乘法表等经典问题,涵盖了数据类型、运算、循环、条件控制等基础知识的综合应用。
67 1

热门文章

最新文章

推荐镜像

更多