最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库

简介: 最新Python-Matplotlib可视化(9)——精通更多实用图形的绘制,2024年最新小米面试题库
n = 512
max_iter = 64
xmin, xmax, ymin, ymax = -2.2, .8, -1.5, 1.5
x = np.linspace(xmin, xmax, n)
y = np.linspace(ymin, ymax, n)
z = np.empty((n, n))
for i, y_i in enumerate(y):
for j, x_j in enumerate(x):
z[i, j] = iter_count(complex(x_j, y_i), max_iter)
plt.imshow(z, cmap = cm.Spectral)
plt.show()

Tips:imshow()接受一个2D数组作为参数置,用于渲染图片,其中每个像素代表一个从2D数组中提取的值。像素的颜色从colormap中选取。2D数组中的数据也可以是自文件或其他源,例如我们完全可以将读取的图片绘制在图形中。

import matplotlib.cm as cm

from matplotlib import pyplot as plt

读取图片

img = plt.imread(‘img.png’)

绘制图片

plt.imshow(img)
plt.show()

我们也可以使用不同的颜色映射观察效果,只需要修改plt.imshow()可选参数cmap的值即可.

plt.imshow(z, cmap = cm.binary, extent=(xmin, xmax, ymin, ymax))

Tips:plt.imshow()的可选参数extent指定存储在二维数组中的数据的坐标系——由四个值组成的元组,分别表示水平轴和垂直轴上的最小、最大范围。

接下来,将数组的尺寸由从512x512减少到32x32,看看效果如何:

n = 64

Tips:使用32x32的数组表示Mandelbrot集时,得到的图片的尺寸并没有缩小,但和512x512数组产生的图片仍有明显差别。这是由于,生成一张给定大小的图片,如果输入的数据小于或大于该图片尺寸,plt.imshow()将执行插值操作。默认的插值是线性插值,可以看出效果并不总是理想的。可以通过imshow()函数的可选参数interpolation指定要使用的插值类型。

使用双三次插值算法(interpolation = ‘bicubic’)查看效果:

为图形添加色彩映射图例


使用色彩映射可以绘制可读性和视觉性都较好的图形,当使用色彩映射时,我们就可以大致知道相应颜色对应的值。

import numpy as np
import matplotlib.cm as cm
from matplotlib import pyplot as plt
def iter_count(c, max_iter):
x = c
for n in range(max_iter):
if abs(x) > 2.:
return n
x = x ** 2 + c
return max_iter
n = 512
max_iter = 64
xmin, xmax, ymin, ymax = -2.2, .8, -1.5, 1.5
x = np.linspace(xmin, xmax, n)
y = np.linspace(ymin, ymax, n)
z = np.empty((n, n))
for i, y_i in enumerate(y):
for j, x_j in enumerate(x):
z[i, j] = iter_count(complex(x_j, y_i), max_iter)
plt.imshow(z, cmap = cm.Spectral, interpolation=‘bicubic’)
cb = plt.colorbar(orientation=‘horizontal’, shrink=.75)
cb.set_label(‘colormaping’)
plt.show()

Tips:plt.colorbar()函数向Matplotlib发出信号显示一个colorbar。其中:可选参数orientation用于选择颜色栏是垂直还是水平,默认情况下,它是垂直的;shrink参数用于缩放颜色栏。调用plt.colorbar()函数将生成一个Colorbar实例,调用该Colorbar实例的set_label()方法,可以为颜色栏设置标题。

二维标量场的可视化


可以使用numpy.meshgrid() 函数从2D函数中生成样本。然后,使用plt.pcolormesh()显示此函数图形:

import numpy as np
import matplotlib.cm as cm
from matplotlib import pyplot as plt
n = 256
x = np.linspace(-3., 3., n)
y = np.linspace(-3., 3., n)
x_list, y_list = np.meshgrid(x, y)
z_list = x_list * np.cos(x_list ** 2 + y_list ** 2)
plt.pcolormesh(x_list, y_list, z_list, cmap = cm.Spectral)
cb = plt.colorbar(orientation=‘horizontal’, shrink=.75)
plt.show()

Tips:使用颜色映射可以帮助我们快速判断相应点的符号和大小。

np.meshgrid()函数的作用是:获取两个坐标列表,并构建坐标网格。因为两个坐标列表都是numpy数组,所以我们可以以处理单个变量的方式处理它们,这使得计算标量场的过程简洁易读。最后,调用函数plt.pcolormesh()呈现图片。

等高线的可视化


等高线将具有相同值的所有点连接起来,可以更容易看到数据的分布特征。

import numpy as np
from matplotlib import pyplot as plt
import matplotlib.cm as cm
def iter_count(c, max_iter):
x = c
for n in range(max_iter):
if abs(x) > 2.:
return n
x = x ** 2 + 0.98 * c
return max_iter
n = 512
max_iter = 80
xmin, xmax, ymin, ymax = -0.32, -0.22, 0.8, 0.9
x = np.linspace(xmin, xmax, n)
y = np.linspace(ymin, ymax, n)
z = np.empty((n, n))
for i, y_i in enumerate(y):
for j, x_j in enumerate(x):
z[j, i] = iter_count(complex(x_j, y_i), max_iter)
plt.imshow(z, cmap = cm.Spectral,
interpolation = ‘bicubic’,
origin = ‘lower’,
extent=(xmin, xmax, ymin, ymax))
levels = [8, 12, 16, 20]
ct = plt.contour(x, y, z, levels, cmap = cm.binary)
plt.clabel(ct, fmt=‘%d’)
plt.show()

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。


相关文章
|
27天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
161 7
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
2月前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
3月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
51 2
Python实用记录(三):通过netron可视化模型
|
3月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
3月前
|
数据采集 Web App开发 数据可视化
Python爬虫教程:Selenium可视化爬虫的快速入门
Python爬虫教程:Selenium可视化爬虫的快速入门
|
3月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
394 0
|
存储 iOS开发 MacOS
100 个基本 Python 面试问题第四部分(57-68)
100 个基本 Python 面试问题第四部分
166 0
100 个基本 Python 面试问题第四部分(57-68)

热门文章

最新文章