二分类的性能指标:PR曲线、ROC曲线、AUC的基本相关概念
PR 曲线
PR曲线实则是以precision(精准率)和recall(召回率)这两个变量而做出的曲线,其中recall为横坐标,precision为纵坐标。
一条PR曲线要对应一个阈值。通过选择合适的阈值,比如50%,对样本进行划分,概率大于50%的就认为是正例,小于50%的就是负例,从而计算相应的精准率和召回率。
如果一个学习器的P-R曲线被另一个学习器的P-R曲线完全包住,则可断言后者的性能优于前者。
我们还可以根据曲线下方的面积大小来进行比较,但更常用的是平衡点或者是F1值。平衡点(BEP)是P=R时的取值,如果这个值较大,则说明学习器的性能较好。而F1=2×P×R/(P+R),同样,F1值越大,我们可以认为该学习器的性能较好。
度量
精确率、查准率 P:预测为正例中预测正确的
召回率、查全率 R:真实结果为正例对应的判断结果(判断正例判断对的TP+判断负例判断错的FN)中判断为正例的
真正例率(TPR): TPR=TP/(TP+FN) 与召回率相同
假正例率(FPR): FPR=FP/(TN+FP) 真实结果为负例对应的判断结果中判断为正例的
混淆矩阵
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import precision_recall_curve,roc_auc_score,average_precision_score,auc
def draw_pr(confidence_scores,data_labels):
plt.figure()
plt.title('PR Curve')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.grid()
# 精准率、召回率、阈值
precision,recall,thresholds = precision_recall_curve(data_labels,confidence_scores)
AP = average_precision_score(data_labels,confidence_scores)
plt.plot(recall,precision,label='pr_curve(AP=%0.2f)'%AP)
plt.legend()
plt.show()
ROC曲线(Receiver Operating Characteristic) 受试者工作特征曲线
ROC曲线实则是以假正例率 (FPR)和 真正例率(TPR)这两个为变量而做出的曲线,其中 FPR 为横坐标, TPR 为纵坐标。
分类器可以给出每个样本数据为正例的概率,我们设定一个阈值,当概率大于阈值则预测结果为正例,否则为负例。此时,通过计算我们可以得到一个(TPR,FPR)对,即图像上的一个点。通过不断调整阈值,就得到若干个点,从而画出一条曲线。
为什么使用ROC曲线
ROC有一个很好的特性,当测试集中的正负样本分布变化时,ROC曲线能够保持不变。
实际情况中经常出现类不平衡的现象,即负样本比真样本多很多的情况(或者相反)
如何调整这个阈值呢?
一般来说,分类器会对一批数据(20个)的每个样本给出一个是正例的概率。对给出的概率进行排序,然后依次使用概率作为阈值,这样就得到了20组(FPR, TPR)。
也可以使用未经softmax(或其他处理的)的概率值
AUC(Area Under Curve)
ROC下的面积,[0,1],通常在[0.5,1]之间。
ROC曲线能直观体现分类器的性能,但是需要一个数值,直接判定分类器的性能好坏。
def draw_roc(confidence_scores,data_labels):
plt.figure()
plt.grid()
plt.title('ROC Curve')
plt.xlabel('FPR')
plt.ylabel('TPR')
fpr,tpr,thresholds = roc_auc_score(data_labels,confidence_scores)
auc = auc(fpr,tpr)
plt.plot(fpr,tpr,label='roc_curve(AUC=%0.2f)'%auc)
plt.legend()
plt.show()
# 正样本的置信度,即模型识别成1的概率
confidence_scores = np.array([0.9, 0.78, 0.6, 0.46, 0.4, 0.37, 0.2, 0.16])
# 真实标签
data_labels = np.array([1,1,0,1,0,0 ,1,1])
draw_roc(confidence_scores,data_labels)
draw_pr(confidence_scores,data_labels)
# 整合了两个函数的画图部分,可以用draw_plt函数处理
def draw_plt(title,xlabel,ylabel,x,y,label_name):
plt.figure()
plt.grid()
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.plot(x,y,label=label_name)
plt.legend()
plt.show()
TODO
- [ ] 后期加上数据和图片
- [ ] 结合具体二分类案例进一步分析