实时计算 Flink版操作报错合集之使用 Event Time Temporal Join 关联多个 HBase 后,Kafka 数据的某个字段变为 null 是什么原因导致的

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

问题一:请问一下Flink:我将docker镜像推到k8s上报错(如下图)。请问是什么原因呀?


请问一下Flink:我将docker镜像推到k8s上报错(如下图)。请问是什么原因呀?


参考回答:

--target那一行去掉,如果是你的程序参数就放到local后面


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566850


问题二:有谁跑通过: 用streampark以session模式运行flinksql?


有谁跑通过: 用streampark以session模式运行flinksql?老是报错找不到hive catalog


参考回答:

这是一个常见的问题,可能是由于以下几个原因造成的:

  1. 配置文件错误:你需要确保你已经正确地配置了Flink SQL客户端的Hive Catalog。请检查你的conf/sql-client-session.yaml文件,看看是否已经包含了正确的Hive配置目录。
  2. Hive服务未启动:如果你还没有启动Hive服务,那么你可能会看到“找不到Hive Catalog”的错误。请确认你的Hive服务正在运行。
  3. 权限问题:请确保你的Flink用户有足够的权限访问Hive Metastore和HDFS上的Hive数据。
  4. 错误的版本兼容性:请确保你的Flink版本与你的Hive版本兼容。某些Flink版本可能无法与较旧的Hive版本一起使用。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566847


问题三:Flink这个错是并行度太小吗?


Flink这个错是并行度太小吗?failureraterestartbackofftimestrategy


参考回答:

不是这样的。FailureRateRestartBackOffTimeStrategy是Flink的一个重启策略,它会在任务失败率达到一定阈值时自动重启任务。这与并行度无关。

例如,如果你设置了FailureRateRestartBackOffTimeStrategy的阈值为50%,并且你的任务并行度为10,则当任务中有五个任务失败时,Flink会自动重启任务。重启后的任务将在一段时间内再次尝试运行,如果再次失败,则会再次重启,直到达到最大的重试次数。

你可以在Flink的配置中设置这个参数,如下所示:

restart-strategy.failure-rate.attempts: number of attempts
restart-strategy.failure-rate.delay: delay between restarts in ms
restart-strategy.failure-rate.max-delay: maximum delay between restarts in ms
restart-strategy.failure-rate.retry-once-per-interval: time interval to wait before restarting the job after an exception has been thrown

你还可以在Java API中使用RestartStrategies.failureRateWithBackoff()方法来设置这个参数。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566843


问题四:flink在处理kafka中数据,发成错误,导致大量重复数据,该如何解决此问题?


请教各位大佬,flink在处理kafka中数据,发成错误,总会返回上一个checkpoint重新执行,导致大量重复数据,该如何解决此问题?


参考回答:

在处理Kafka数据时,如果出现大量重复数据,可能是因为Flink的 checkpointing机制导致的。Flink的 checkpointing机制是为了在遇到异常情况时能够恢复工作流,但是也可能导致数据重复。

解决这个问题的方法是配置Flink的 checkpointing参数。在Flink的配置文件中,可以配置streaming.checkpointing.interval参数来控制 checkpointing的间隔。这个参数的值越大,每次 checkpoint 的数据就越多,但是也会增加系统的内存消耗。如果系统内存不足,可能会导致 checkpointing 的失败。

另外,还可以使用streaming.checkpointing.max.interval参数来控制 checkpointing 的最大间隔。这个参数的值越大,每次 checkpoint 的数据就越多,但是也会增加系统的内存消耗。如果系统内存不足,可能会导致 checkpointing 的失败。

在配置了这些参数后,如果还出现大量重复数据的问题,可以考虑使用Flink的replayMode参数来控制 checkpointing 的方式。replayMode参数的值可以是MANUALREPLACEAPPENDMANUAL模式下,Flink会将最新的 checkpoint 文件覆盖旧的 checkpoint 文件,从而避免重复数据。REPLACE模式下,Flink会将最新的 checkpoint 文件替换旧的 checkpoint 文件,从而避免重复数据。APPEND模式下,Flink会将最新的 checkpoint 文件追加到旧的 checkpoint 文件中,从而避免重复数据。

具体的配置方法如下:

streaming:
  checkpointing:
    interval: 10000000
    max-interval: 10000000
    replayMode: REPLACE

在这个配置中,interval参数的值是10000000毫秒,max-interval参数的值是10000000毫秒,replayMode参数的值是REPLACE。这些参数的值可以根据实际情况进行调整。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566838


问题五:请教一个问题 flinksql 中 kafka 关联 多个 hbase 之后,有遇到过的吗?


请教一个问题 flinksql 中 kafka 关联 多个 hbase 之后,使用 Event Time Temporal Join 关联,然后我的kafka数据字段就变成null了 有遇到过的吗?from kafka_rcsp_label_table t1

left join hbase_mb_videomanage for system_time as of t1.procTime as t2

on t1.videoCode=t2.rowkey

left join hbase_mb6_page_bus for system_time as of t1.procTime as t3

on t1.mbk_usdf_evnt_id=t3.rowkey


参考回答:

根据您的描述,Flink SQL 使用 Event Time Temporal Join 关联多个 HBase 后,Kafka 数据的某个字段变为 null 的情况可能是由于在关联时处理时间或事件时间计算出现错误导致的。

首先,请确保您使用的 Kafka 和 HBase 数据源都是基于 Flink SQL 官方支持的数据源连接器,并且它们都已正确配置并可以正常工作。

其次,请仔细检查您的 Flink SQL 语句中涉及时间相关参数的部分,例如“for system_time as of t1.procTime”等,确保它们所引用的时间属性字段是在 Kafka 或 HBase 中实际存在的,并且其值是可以用于关联操作的。

另外,请检查您的 Flink SQL 语句中的 ON 子句,确保它所包含的关键字和操作符与 Flink SQL 的语法要求相符,避免因为语法错误导致的查询结果异常。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/566837

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
4月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
506 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
11月前
|
消息中间件 网络协议 Java
【Azure Event Hub】Kafka消息发送失败(Timeout Exception)
Azure closes inbound Transmission Control Protocol (TCP) idle > 240,000 ms, which can result in sending on dead connections (shown as expired batches because of send timeout).
308 75
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3696 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
10月前
|
消息中间件 Java Kafka
【Azure Kafka】使用Spring Cloud Stream Binder Kafka 发送并接收 Event Hub 消息及解决并发报错
reactor.core.publisher.Sinks$EmissionException: Spec. Rule 1.3 - onSubscribe, onNext, onError and onComplete signaled to a Subscriber MUST be signaled serially.
187 5
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
550 56
|
11月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
696 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
12月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。

热门文章

最新文章

相关产品

  • 实时计算 Flink版