实时计算 Flink版操作报错合集之用CTAS从mysql同步数据到hologres,改了字段长度,报错提示需要全部重新同步如何解决

简介: 在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。

问题一:在Flink我这样创建的水印,但是任务运行的时候报错怎么处理?


在Flink我这样创建的水印,但是任务运行的时候报错怎么处理?

timestamp是bigint型, 单位秒,我也这么改过,

但是问题还是存在,没有解决。

参考回答:

看起来你的SQL语句有些问题。在Flink SQL中,WATERMARK FOR应该放在表定义的最后,而不是作为单独的一行。另外,INTERVAL 5’SECOND应该是INTERVAL '5' SECOND。以下是修复后的SQL语句:

CREATE TEMPORARY TABLE cloud_siem_aegis_proc(
scan_time VARCHAR,
host_uuid VARCHAR,
timestamp BIGINT METADATAVIRTUAL,
uid VARCHAR,
u_name VARCHAR,
euid VARCHAR,
gid VARCHAR,
euid_name VARCHAR,
gid_name VARCHAR,
egroup_id VARCHAR,
egroup_name VARCHAR,
sid'VARCHAR,
parent_proc_id VARCHAR,
proc_id VARCHAR,
tty VARCHAR,
parent_file_name VARCHAR,
cwd VARCHAR,
parent_cmd_line VARCHAR,
file_name'VARCHAR,
cmd_line VARCHAR,
parent_file_path VARCHAR,
perm VARCHAR,
file_path VARCHAR,
proc_start_time VARCHAR,
indexVARCHAR,
file_gid VARCHAR,
file_uid VARCHAR,
file_gid_name VARCHAR,
file_uid_name VARCHAR,
log_time VARCHAR,
docker_container_id VARCHAR,
docker_file_path VARCHAR,
docker_image_name VARCHAR,
docker_image_id VARCHAR,
k8s_name_space VARCHAR,
k8s_pod_name VARCHAR,
k8s_node_name VARCHAR,
k8s_node_id VARCHAR,
cmd_chain VARCHAR,
k8s_cluster_id VARCHAR,
main_user_id VARCHAR,
cmd_chain_index VARCHAR,
ts_ltzASTO_TIMESTAMP(FROM_UNIXTIME(_timestamp, yyyy-1-dd HH:mm:ss')),
sub user id VARCHAR.
WATERMARK FORts_ltzAS ts_ltz- INTERVAL '5' SECOND
) WITH(
'connector'='sls',
... # other options
);


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570441


问题二:Flink有什么好的解决方案吗?


Flink有什么好的解决方案吗?我们用CTAS从mysql同步数据到hologres,改了字段长度,报错提示需要全部重新同步。


参考回答:


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570438


问题三:Flink我这边作业配置了输出到SLS,但是没有写到到SLS,也没有报错,应该怎么排查呢?


Flink我这边作业配置了输出到SLS,但是没有写到到SLS,也没有报错,应该怎么排查呢?


参考回答:

如果你在Flink作业中配置了输出到SLS,但没有看到数据写入到SLS,可能有以下几种原因:

  1. 检查你的Flink作业是否正确执行。你可以通过查看Flink任务的日志来确认。如果任务没有被执行,那么数据自然不会写入到SLS。
  2. 检查你的SLS输出格式是否正确。确保你的SLS输出格式与Flink的SLS connector的期望格式相符。
  3. 检查你的SLS output table是否有正确的分区策略。如果没有正确的分区策略,可能会导致数据无法写入到SLS。
  4. 检查你的SLS output table是否有正确的watermark策略。如果没有正确的watermark策略,可能会导致数据无法写入到SLS。
  5. 检查你的SLS output table是否有正确的序列化策略。如果没有正确的序列化策略,可能会导致数据无法写入到SLS。
  6. 检查你的SLS output table是否有正确的并行度设置。如果没有正确的并行度设置,可能会导致数据无法写入到SLS。
  7. 检查你的SLS output table是否有正确的触发器设置。如果没有正确的触发器设置,可能会导致数据无法写入到SLS。
  8. 检查你的SLS output table是否有正确的窗口设置。如果没有正确的窗口设置,可能会导致数据无法写入到SLS。
  9. 检查你的SLS output table是否有正确的连接器设置。如果没有正确的连接器设置,可能会导致数据无法写入到SLS。
  10. 检查你的SLS output table是否有正确的数据源设置。如果没有正确的数据源设置,可能会导致数据无法写入到SLS。

以上都是可能的原因,具体的情况可能需要根据你的实际配置和Flink任务的日志来进行排查。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570432


问题四:Flink如果默认是At-Least-Once语义,ck有重复数据比较好理解,丢数据可能是什么原因?


Flink如果默认是At-Least-Once语义,ck有重复数据比较好理解,请问丢数据可能是什么原因造成的?cp正常的,有时候会有ck连接超时的报错,可能是ck压力大的原因。现在maxRetryTimes置为0了,这个是不是会影响丢数据?


参考回答:

Flink的At-Least-Once语义意味着每个消息至少会被处理一次,所以可能会出现重复的数据。但是,如果数据丢失,那么可能是因为以下原因:

  1. 网络问题:网络不稳定或者延迟高可能导致数据在传输过程中丢失。
  2. Flink任务失败:如果Flink任务因为某些原因(如内存不足、任务崩溃等)失败,那么正在处理的数据可能会丢失。
  3. Sink处理失败:如果你的数据需要经过多个步骤才能写入到SLS,那么在中间步骤出现问题时,数据可能会丢失。
  4. 数据编码错误:如果你的数据在编码过程中出现错误,那么数据可能会丢失。

关于你提到的ck连接超时的问题,这可能是由于ck的压力过大导致的。如果你将maxRetryTimes设置为0,那么Flink在遇到连接超时的情况下将不再重试,这可能会导致数据丢失。建议你将maxRetryTimes设置为大于0的值,以便在连接超时的情况下进行重试。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570424


问题五:使用flink jdbc连接oracle,不使用条件过滤和没有非法列名时,为什么一直报错缺失等号?


使用flink jdbc连接oracle的时候,在不使用条件过滤和没有非法列名的时候,一直报错缺失等号是什么问题?另外为什么flink jdbc在连接oracle使用的时候,在URL后面指定了数据库的databases,在参数里有table-name可以指定表名,但是没有oracle的shame-name配置的地方?


参考回答:

  1. 缺失等号的问题可能是由于在查询语句中没有指定列名导致的。在使用Flink JDBC连接Oracle时,需要在查询语句中指定列名,否则会报错。请检查您的查询语句,确保已经指定了列名。
  2. Flink JDBC在连接Oracle时,URL后面指定的是数据库的SID(System IDentifier),而不是databases。在参数里有table-name可以指定表名,但是没有oracle的schema-name配置的地方,因为Flink JDBC默认使用当前用户的schema。如果您需要指定特定的schema,可以在查询语句中使用schema.table的方式来访问表。例如:SELECT * FROM


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/570372


相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
5月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
603 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
7月前
|
关系型数据库 MySQL
MySQL数据表添加字段(三种方式)
本文解析了数据表的基本概念及字段添加方法。在数据表中,字段是纵向列结构,记录为横向行数据。MySQL通过`ALTER TABLE`指令支持三种字段添加方式:1) 末尾追加字段,直接使用`ADD`语句;2) 首列插入字段,通过`FIRST`关键字实现;3) 指定位置插入字段,利用`AFTER`指定目标字段。文内结合`student`表实例详细演示了每种方法的操作步骤与结构验证,便于理解与实践。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
4011 74
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
619 56
|
10月前
|
DataWorks 关系型数据库 Serverless
DataWorks数据集成同步至Hologres能力介绍
本文由DataWorks PD王喆分享,介绍DataWorks数据集成同步至Hologres的能力。DataWorks提供低成本、高效率的全场景数据同步方案,支持离线与实时同步。通过Serverless资源组,实现灵活付费与动态扩缩容,提升隔离性和安全性。文章还详细演示了MySQL和ClickHouse整库同步至Hologres的过程。
|
DataWorks 关系型数据库 Serverless
DataWorks数据集成同步至Hologres能力介绍
本次分享的主题是DataWorks数据集成同步至Hologres能力,由计算平台的产品经理喆别(王喆)分享。介绍DataWorks将数据集成并同步到Hologres的能力。DataWorks数据集成是一款低成本、高效率、全场景覆盖的产品。当我们面向数据库级别,向Hologres进行同步时,能够实现简单且快速的同步设置。目前仅需配置一个任务,就能迅速地将一个数据库实例内的所有库表一并传输到Hologres中。
289 12
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
804 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
分布式计算 关系型数据库 MySQL
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型 图像处理 光通信 分布式计算 算法语言 信息技术 计算机应用
289 8

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多