Python数据分析 | 线性回归

简介: Python数据分析 | 线性回归

Python数据分析学习笔记,今天分享下利用Python对业务进行数据预处理,并利用线性回归进行数据预测。





壹 数据导入


Python下载及环境配置这里就不赘述了哈,网上教程非常多,我们直接一开始就进入干货,打它一个开门见山。

①导入Python常用数据分析库:常用的numpy、pandas、matplotlib先导入。

②将待处理的数据读取:read_excel进行Excel文件读取,用sheet_name指定导入的sheet。

③数据初视:用head函数将读取的数据表格展示前几行用于初步观察,可以看到初步的数据形式、字段。



数据预处理


初步观察发现有一些列的数据是空的,它们对于数据分析没有意义,考虑去掉。并且后续进行一定的数据预处理。

①去掉无效列:运用drop函数去掉无效的数据列,并再次调用head函数观察数据。

②看上图效果,数据已经规整一些了,接下来需要看看整体的数据表还有多大:调用shape并用print函数打印出来,可以看到数据表格是227行、12列的大小。

③接下来需要进行数据缺失值处理:调用info函数,查看各列的数据,可以看到各列的数据还是有不一致的情况,需要做进一步的处理。

④先以我们后续需要用来做线性回归的列“内容阅读量”为标准,将不含该值的数据行去除:调用dropna函数,并执行info函数看数据情况。

⑤上述处理后,数据已经规整了一些,但某些行的数值仍然是缺失的,此时不能再整行或整列的进行删除了,须对个别缺失值执行填充:发现“月留”和“当月高活人数”这两列仍有缺失值,采取均值填充的方法处理,主要用到fillna函数。

至此,数据预处理流程完成。数据预处理非常关键,非常影响后续的数据分析流程




线性回归


数据预处理流程完成后,后续将进行线性回归,进行业务相关数据的拟合和预测。

①导入线性回归分析库:建立线性回归的自变量x和因变量y,这里我们以“内容阅读量”这一列数据作为x,以“业务DAU(人)”这一列作为y。

②建立线性回归方程,并计算出回归系数:调用linear_model库,计算回归系数为0.1683。

③绘制拟合图:调用matplotlib库里的scatter方法绘制y和x的散点图,并将线性回归拟合的直线也同步绘制上去

④数据预测:调用linear_model库里的predict方法,可以预测出因变量后续的值。便于大家后续对结果进行预估。


至此,利用Python进行线性回归的实例完成。

目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
81 3
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
73 3
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
95 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
108 4
数据分析的 10 个最佳 Python 库
|
2月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
2月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
2月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
2月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。