不懂这些,简历上都不敢写自己熟悉Redis

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 无论大中小公司,只要属于互联网公司,那公司的服务器必定安装着一台Redis服务器。为啥这么多公司如此青睐Redis?难道是别人有部署Redis我就要跟着有嘛,肯定不是的。既然有那么多公司青睐Redis,那它的业务场景又是什么。跟着我一起来看看看Redis有什么引人入胜的吸引力~

无论大中小公司,只要隶属于互联网公司,那公司的服务器必定安装着一台Redis服务器。为啥这么多公司如此青睐Redis?难道是别人有部署Redis我就要跟着有嘛,肯定不是的。既然有那么多公司青睐Redis,那它的业务场景又是什么。跟着我一起来看看看Redis有什么引人入胜的吸引力~

在这里插入图片描述

本文收录在我开源的《Java学习面试指南》中,一份覆盖Java程序员所需掌握的Java核心知识、面试重点。希望收到大家的 ⭐ Star ⭐支持。GitHub地址:https://github.com/hdgaadd/JavaGetOffer,相信你看了一定不会后悔。

1. Redis快的秘密

面试官:Redis什么这么快?

相信大部分Redis初学者都会忽略掉一个重要的知识点,Redis其实是单线程模型。我们按直觉来看应该是多线程比单线程更快、处理能力更强才对,比如单线程一次只可以做一件事情,而多线程却可以同时做十件事情。

但Redis却可以做到每秒万级别的处理能力,主要是基于以下原因:

(1)Redis是基于内存操作的,Redis所有的数据库状态都保存在内存中。而内存的响应时长是非常快速的,大约在100纳秒。大家可以对比下其他服务器磁盘,固态硬盘(SSD)、机械硬盘(HDD)响应时长大约几十微秒,很明显远远没有基于内存的响应时长快速。

(2)Redis采用I/O多路复用技术,这种I/O模型是非阻塞I/O,应用程序在等待I/O操作完成的过程中不需要阻塞。

(3)最后一点也是我开头提到的,Redis采用了单线程模型。单线程模型避免了多线程产生的线程切换和锁竞争带来的资源消耗,这两种消耗对性能影响是很大的。另外一点是单线程相比多线程来说实现更简单高效,如果引入多线程设计相信Redis实现起来会更加复杂不易优化。

2. Redis数据类型

2.1 Redis五大基本数据类型

面试官:你说说Redis五大基本数据类型?

Redis基本数据类型一共有五种,这也是面试官重点考查的基础,大家要重点关注下。

(1)字符串。

字符串是Redis最基础,也是业务开发中最常见的一种数据类型。在业务上一般使用MySQL作为实际存储层,而Redis字符串作为缓冲层对象。

127.0.0.1:6379> set name JavaGetOffer
OK
127.0.0.1:6379> get name
"JavaGetOffer"

(2)哈希。

哈希的键值本身是一个键值对结构,类似于key = { {field, value}, {field, value}}

我们可以使用hset命令设置哈希键值,而hget命令可以获取哈希对象中某个field的值。

127.0.0.1:6379> hset msg name JavaGetOffer
(integer) 1
127.0.0.1:6379> hset msg avator 思考的陈
(integer) 1
127.0.0.1:6379> hget msg name
"JavaGetOffer"
127.0.0.1:6379> hget msg avator
"思考的陈"

(3)列表。

Redis的列表是一个有序列表,但大家注意一点,此处所说的有序不是按数据大小排序的有序,而是按插入顺序的有序。另外一点特殊之处是我们可以往列表的左右两边添加元素。

# 从右边添加
127.0.0.1:6379> rpush number 1 2 3
(integer) 3
# 从左边添加
127.0.0.1:6379> lpush number 4 5 6
(integer) 6
127.0.0.1:6379> lrange number 0 5
1) "6"
2) "5"
3) "4"
4) "1"
5) "2"
6) "3"

(4)集合。

集合类型和列表不同之处在于它是无序的,同时也不支持保存重复的元素

另外两个集合之间可以获得交集、并集、差集。利用这一点,如果在业务上要求得两个用户相同的兴趣标签,可以使用Redis集合存储用户兴趣标签,再使用交集命令来查询。

127.0.0.1:6379> sadd user:1:like game bask run
(integer) 3
127.0.0.1:6379> sadd user:2:like game basketball fitness
(integer) 3
# 求交集
127.0.0.1:6379> sinter user:1:like user:2:like
1) "game"

(5)有序集合。

有序集合算是Redis中比较特殊的一种数据类型,有序集合里的每个元素都带有一个score属性,通过该score属性进行排序。如果我们往有序集合插入元素,此时它就不像列表对象一样是插入有序,而是根据score进行排序的。

127.0.0.1:6379> zadd 100run:ranking 13 mike
(integer) 1
127.0.0.1:6379> zadd 100run:ranking 12 jake
(integer) 1
127.0.0.1:6379> zadd 100run:ranking 16 tom
(integer) 1
127.0.0.1:6379> zrange 100run:ranking 0 2
1) "jake"
2) "mike"
3) "tom"

2.2 有序集合业务场景

面试官:有利用过有序集合开发过什么功能吗?

有序集合典型的业务开发场景是实现一个排行榜,我们可以通过有序集合的score元素来作为排行榜排序的标准。

而排行榜的获取一般是分页获取,我们可以使用jedis客户端提供的zrevrangeWithScores方法来获得,返回的类型是一个Set<Tuple>,从Tuple对象中可以获得元素和score值,如代码所示。

        try (Jedis jedis = jedisPool.getResource()) {
   
            String rankKey = "rankKey";
            Set<Tuple> rankTuple = jedis.zrevrangeWithScores(rankKey, index, index + pageSize - 1);

            List<UserRankBO> = rankTuple.stream().map(r -> UserRankBO.builder()
                    .uid(Integer.parseInt(r.getElement()))
                    .score(r.getScore())
                    .build()).collect(Collectors.toList());
        }
    public Set<Tuple> zrevrangeWithScores(String key, long start, long stop) {
   
        this.checkIsInMultiOrPipeline();
        this.client.zrevrangeWithScores(key, start, stop);
        return this.getTupledSet();
    }

2.3 有序集合数据结构

面试官:有序集合用什么数据结构来实现?

有序集合有两种内部编码:ziplist和skiplist。ziplist编码是以压缩列表来实现,而在skiplist编码中是同时使用字典和跳跃表两种数据结构来实现,原因下个面试官问题有提及。

(1)字典。

字典里保存的是键值对结构,和上文提交的哈希对象不是同一个级别的产物,字典是Redis内部的数据结构,而哈希对象是提供给外部使用的。例如存储键的键空间、存储建过期时间的过期字典都是由字典来实现的。

字典的组成结构如下所示。可以看到ht数组有两个dictht哈希表,Redis的平常使用时只使用其中一个哈希表,而另一个是在迁移扩展哈希表rehash时使用。当迁移完成后,原先日常使用的旧哈希表会被清空,而新的哈希表变成日常使用的。

typedef struct dict {
   
    dictType *type;
    void *privdata;
    // 哈希表
    dictht ht[2];
    in trehashidx;
} dict;

(2)跳跃表。

跳跃表的底层结构类似于一个值 + 保存了指向其他节点的level数组,而这个level数组的作用就是用来加快访问其他节点的速度。跳跃表的查询效率是比较快的,可以和平衡二叉树相媲美,同时跳跃表相比平衡树的实现更加的简单。

跳跃表的组成结构如下所示。

typedef struct zskiplistNode {
   
    // level数组
    struct zskiplistLevel {
   
        // 前进指针
        struct zskiplistNode *forward;
        // 跨度
        unsigned int span;
    } level[];
    // 后退指针
    struct zskiplistNode *backward;
    // 分值
    double score;
    robj *obj;
} zskiplistNode;

2.4 为什么使用字典和跳跃表

面试官:那有序集合为什么要使用字典和跳跃表?

同时使用字典和跳跃表的设计主要是考虑了性能因素,两者都有其效率最高的场景,要高效利用它们来提高Redis性能。

  1. 如果单纯使用字典,查询时的效率很高,可以达到高效的O(1)时间复杂度。但执行类似ZRANGE、ZRNK命令时,效率是比较低的。因为每次排序需要在内存上对字典进行排序一次,这消耗了额外的O(n)内存空间。
  2. 如果单纯使用跳跃表,虽然执行类似ZRANGE、ZRNK命令时的效率高,但查询性能又会从O(1)上升到了O(logN)。

所以Redis内部会对有序集合采用字典和跳跃表两种实现,当使用对应不同场景时,就采用对应的不同数据结构来高效操作有序集合。

3. 压缩列表

面试官:压缩列表呢?

压缩列表顾名思义作用在于压缩,主要是Redis为了节约内存开发的一种数据结构。一共有三种数据类型使用到了压缩列表。

列表键里如果包含的都是类似小整数、短字符串类型的,会采用压缩列表的底层实现。

127.0.0.1:6379> rpush number 1 2 3
(integer) 3
127.0.0.1:6379> object encoding number
"ziplist"

哈希键如果只包含少量的键值对,同时键、值都是类似小整数、短字符串类型的,会采用压缩列表的底层实现。

127.0.0.1:6379> hset msg name JavaGetOffer
(integer) 1
127.0.0.1:6379> hset msg avator 思考的陈
(integer) 1
127.0.0.1:6379> object encoding msg
"ziplist"

有序集合当元素个数小于128个时,内部编码会转换为压缩列表ziplist。

127.0.0.1:6379> zadd 100run:ranking 13 mike 12 jake 16 tom
(integer) 3
127.0.0.1:6379> object encoding 100run:ranking
"ziplist"

创作不易,不妨点赞、收藏、关注支持一下,各位的支持就是我创作的最大动力❤️

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
缓存 NoSQL JavaScript
简历上写的电商,那请问Redis 如何实现库存扣减操作和防止被超卖?
在日常开发中有很多地方都有类似扣减库存的操作,比如电商系统中的商品库存,抽奖系统中的奖品库存等。
简历上写的电商,那请问Redis 如何实现库存扣减操作和防止被超卖?
|
2月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
100 1
|
2月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
52 2
数据的存储--Redis缓存存储(二)
|
2月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
78 6
|
2月前
|
缓存 NoSQL 关系型数据库
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
本文深入探讨了Redis缓存的相关知识,包括缓存的概念、使用场景、可能出现的问题(缓存预热、缓存穿透、缓存雪崩、缓存击穿)及其解决方案。
222 0
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
|
1月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
1月前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
1月前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
240 22
|
29天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
39 5
|
1月前
|
缓存 NoSQL 中间件
redis高并发缓存中间件总结!
本文档详细介绍了高并发缓存中间件Redis的原理、高级操作及其在电商架构中的应用。通过阿里云的角度,分析了Redis与架构的关系,并展示了无Redis和使用Redis缓存的架构图。文档还涵盖了Redis的基本特性、应用场景、安装部署步骤、配置文件详解、启动和关闭方法、systemctl管理脚本的生成以及日志警告处理等内容。适合初学者和有一定经验的技术人员参考学习。
187 7

相关产品

  • 云数据库 Tair(兼容 Redis)