MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型

简介: 这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。

主要内容  

该程序实现多输入单输出预测,通过融合正余弦和柯西变异改进麻雀搜索算法,对CNN-BiLSTM的学习率、正则化参数以及BiLSTM隐含层神经元个数等进行优化,并对比了该改进算法和粒子群、灰狼算法在优化方面的优势。该程序数据选用的是一段风速数据,数据较为简单,方便同学进行替换学习。程序对比了优化前和优化后的效果,注释清晰,方便学习,建议采用高版本matlab运行。


 部分代码  

%% 导入数据

data =  xlsread('data.xls','B:B');

[h1,l1]=data_process(data,8);   %步长为8,采用前8天的价格与预测第9

data = [h1,l1];

[m,n]=size(data);

input = data(:,1:n);

output = data(:,n);


numTimeStepsTrain = floor(0.7*numel(data(:,1)));  %取70%的数据作为训练集


XTrain = input(1:numTimeStepsTrain,:);

YTrain = output(1:numTimeStepsTrain,:);


XTest = input(numTimeStepsTrain+1:end,:);

YTest = output(numTimeStepsTrain+1:end,:);


x = XTrain;

y = YTrain;


[xnorm,xopt] = mapminmax(x',0,1);

[ynorm,yopt] = mapminmax(y',0,1);



% 转换成2-D image

for i = 1:length(ynorm)

   Train_xNorm{i} = reshape(xnorm(:,i),n,1,1);

   Train_yNorm(:,i) = ynorm(:,i);

   Train_y(i,:) = y(i,:);

end

Train_yNorm= Train_yNorm';



xtest = XTest;

ytest = YTest;

[xtestnorm] = mapminmax('apply', xtest',xopt);

[ytestnorm] = mapminmax('apply',ytest',yopt);

xtest = xtest';

for i = 1:length(ytestnorm)

 Test_xNorm{i} = reshape(xtestnorm(:,i),n,1,1);

 Test_yNorm(:,i) = ytestnorm(:,i);

 Test_y(i,:) = ytest(i,:);

end

Test_yNorm = Test_yNorm';



%% 优化算法优化前,构建优化前的CNN-BILSTM模型

inputSize = n;

outputSize = 1;  %数据输出y的维度  


layers0 = [ ...

   

   sequenceInputLayer([inputSize,1,1],'name','input')   %输入层设置

   sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。

   

   convolution2dLayer([2,1],10,'Stride',[1,1],'name','conv1')  %添加卷积层,2,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长

   batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸

   reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题

   

   convolution2dLayer([1,1],10,'Stride',[1,1],'name','conv2')       %添加卷积层,2,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长

   batchNormalizationLayer('name','batchnorm2')        % BN层,用于加速训练过程,防止梯度消失或梯度爆炸

   reluLayer('name','relu2')           % ReLU激活层,用于保持输出的非线性性及修正梯度的问题


 部分结果一览  



相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
2天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
6天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
30天前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
32 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
17天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
24天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
71 1
|
3天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
10 0
|
27天前
|
机器学习/深度学习 SQL 数据采集
基于tensorflow、CNN网络识别花卉的种类(图像识别)
基于tensorflow、CNN网络识别花卉的种类(图像识别)
22 1
|
6天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。

热门文章

最新文章