MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型

简介: 这段内容介绍了一个使用改进的麻雀搜索算法优化CNN-BiLSTM模型进行多输入单输出预测的程序。程序通过融合正余弦和柯西变异提升算法性能,主要优化学习率、正则化参数及BiLSTM的隐层神经元数量。它利用一段简单的风速数据进行演示,对比了改进算法与粒子群、灰狼算法的优化效果。代码包括数据导入、预处理和模型构建部分,并展示了优化前后的效果。建议使用高版本MATLAB运行。

主要内容  

该程序实现多输入单输出预测,通过融合正余弦和柯西变异改进麻雀搜索算法,对CNN-BiLSTM的学习率、正则化参数以及BiLSTM隐含层神经元个数等进行优化,并对比了该改进算法和粒子群、灰狼算法在优化方面的优势。该程序数据选用的是一段风速数据,数据较为简单,方便同学进行替换学习。程序对比了优化前和优化后的效果,注释清晰,方便学习,建议采用高版本matlab运行。


 部分代码  

%% 导入数据

data =  xlsread('data.xls','B:B');

[h1,l1]=data_process(data,8);   %步长为8,采用前8天的价格与预测第9

data = [h1,l1];

[m,n]=size(data);

input = data(:,1:n);

output = data(:,n);


numTimeStepsTrain = floor(0.7*numel(data(:,1)));  %取70%的数据作为训练集


XTrain = input(1:numTimeStepsTrain,:);

YTrain = output(1:numTimeStepsTrain,:);


XTest = input(numTimeStepsTrain+1:end,:);

YTest = output(numTimeStepsTrain+1:end,:);


x = XTrain;

y = YTrain;


[xnorm,xopt] = mapminmax(x',0,1);

[ynorm,yopt] = mapminmax(y',0,1);



% 转换成2-D image

for i = 1:length(ynorm)

   Train_xNorm{i} = reshape(xnorm(:,i),n,1,1);

   Train_yNorm(:,i) = ynorm(:,i);

   Train_y(i,:) = y(i,:);

end

Train_yNorm= Train_yNorm';



xtest = XTest;

ytest = YTest;

[xtestnorm] = mapminmax('apply', xtest',xopt);

[ytestnorm] = mapminmax('apply',ytest',yopt);

xtest = xtest';

for i = 1:length(ytestnorm)

 Test_xNorm{i} = reshape(xtestnorm(:,i),n,1,1);

 Test_yNorm(:,i) = ytestnorm(:,i);

 Test_y(i,:) = ytest(i,:);

end

Test_yNorm = Test_yNorm';



%% 优化算法优化前,构建优化前的CNN-BILSTM模型

inputSize = n;

outputSize = 1;  %数据输出y的维度  


layers0 = [ ...

   

   sequenceInputLayer([inputSize,1,1],'name','input')   %输入层设置

   sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。

   

   convolution2dLayer([2,1],10,'Stride',[1,1],'name','conv1')  %添加卷积层,2,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长

   batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸

   reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题

   

   convolution2dLayer([1,1],10,'Stride',[1,1],'name','conv2')       %添加卷积层,2,1表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长

   batchNormalizationLayer('name','batchnorm2')        % BN层,用于加速训练过程,防止梯度消失或梯度爆炸

   reluLayer('name','relu2')           % ReLU激活层,用于保持输出的非线性性及修正梯度的问题


 部分结果一览  



相关文章
|
3月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
260 4
|
3月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
408 0
|
3月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
200 0
|
3月前
|
传感器 机器学习/深度学习 数据采集
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
【航空发动机寿命预测】基于SE-ResNet网络的发动机寿命预测,C-MAPSS航空发动机寿命预测研究(Matlab代码实现)
319 0
|
SQL 监控 安全
网络安全与信息安全:漏洞、加密与安全意识
随着互联网的迅猛发展,网络安全和信息安全问题日益受到关注。本文深入探讨了网络安全漏洞、加密技术以及提高个人和组织的安全意识的重要性。通过分析常见的网络攻击手段如缓冲区溢出、SQL注入等,揭示了计算机系统中存在的缺陷及其潜在威胁。同时,详细介绍了对称加密和非对称加密算法的原理及应用场景,强调了数字签名和数字证书在验证信息完整性中的关键作用。此外,还讨论了培养良好上网习惯、定期备份数据等提升安全意识的方法,旨在帮助读者更好地理解和应对复杂的网络安全挑战。
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
305 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
250 10
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
259 10
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。

热门文章

最新文章