实时计算 Flink版产品使用合集之使用ParameterTool.fromArgs(args)解析参数为null,该怎么处理

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink朴素贝叶斯 这里 是不是有问题呀?


Flink朴素贝叶斯 这里 是不是有问题呀?


参考回答:

看起来这段代码是从一个流中反序列化出一些数据,然后构建出一个NaiveBayes模型。这里的serializermapSerializerinputViewStreamlwrapper可能是自定义的类或者对象,用于进行数据的序列化和反序列化。

这段代码的主要逻辑是:首先从输入流中读取特征的数量(featureSize)和标签的数量(numLabels),然后创建一个二维数组theta,用于存储每个特征在每个标签下的概率。接着,使用mapSerializer从输入流中反序列化出每个标签下的概率,并将其存储到theta数组中。最后,返回一个包含所有反序列化数据的NaiveBayes模型。

如果你在运行这段代码时遇到了问题,可能需要查看相关的类和对象的定义,以及它们如何进行数据的序列化和反序列化。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568559


问题二:Flink 这个为什么执行这么慢呢?


Flink 这个为什么执行这么慢呢?


参考回答:

针对你提到的问题,首先需要明确的是,Flink是一个用于流处理和批处理的开源平台,它提供了SQL API来简化数据处理任务。而你遇到的问题似乎是由于Flink SQL查询执行速度慢并且出现了java.util.concurrent.TimeoutException异常。

以下是一些可能导致这个问题的原因以及相应的解决方案:

  1. 数据量过大:如果你的数据量非常大,查询可能需要更长的时间来处理。在这种情况下,你可以考虑对数据进行分页查询或者过滤,以减少查询的数据量。例如,你可以使用SELECT * FROM ods_t_sale_order_tmp_test WHERE column1 = value1 LIMIT 100的方式来获取部分数据。
  2. 数据倾斜:在Flink中,如果数据在多个并行任务之间分布不均匀,可能会导致某些任务执行时间过长,从而导致超时异常。你可以检查是否存在这种情况,并相应地调整并行度或者优化数据分布。
  3. 系统资源不足:如果Flink集群的资源不足(例如CPU、内存、网络带宽等),可能会导致查询执行速度慢或者出现异常。你可以检查集群的资源使用情况,并根据需要进行调整。
  4. SQL查询优化:对于复杂的SQL查询,可能需要进行优化以提高执行效率。你可以考虑使用Flink提供的查询优化功能或者使用执行计划来分析查询的性能瓶颈。
  5. 异常处理:针对出现的java.util.concurrent.TimeoutException异常,你可以在Flink的配置中增加超时时间,以允许查询有更多的时间来执行。

综上所述,要解决Flink SQL查询执行慢的问题,需要结合实际情况进行排查和优化。以上提到的方案可以作为参考,但具体的解决方案可能需要根据你实际的数据、系统资源以及查询需求进行调整。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568558


问题三:我想把resultStream 分别存入hbase和Redis, 为啥flink的流程图是串行的?


请教一下我想把resultStream 分别存入hbase和Redis, 为啥flink的流程图是串行的, 不是并行的?效果也不是我理解的那样


参考回答:

中间那个 合成算子链了吧 所以放在一起展示 ,用disableChaining可以断开 。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568556


问题四:ParameterTool.fromArgs(args)Flink解析参数为null的情况怎么处理?


ParameterTool.fromArgs(args);Flink解析参数为null的情况怎么处理?


参考回答:

如果 ParameterTool 参数为空,则说明您未正确指定参数。请尝试以下步骤:

  1. 使用正确的参数格式

Parameter Tool 参数应该是逗号分隔的一组键值对。例如:-Dkey=value

  1. 使用正确的命令行选项

如果您使用命令行参数,则需要加上 -D 参数前缀。例如:

ParameterTool parameterTool = ParameterTool.fromArgs("-Dkey=value");
  1. 检查源码中的参数是否正确

检查您的代码中是否存在错误的参数名称或缺失的参数值。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568555


问题五:在Flink使用sqlclient去传输数据的时,为啥checkpoint显示完成但是大小是0b?


在Flink使用sqlclient去传输数据的时候 为啥checkpoint的显示完成但是大小是0b啊?


参考回答:

这可能是由于以下原因之一导致的:

  1. 没有启用checkpoint。请确保您已正确配置Flink作业以启用checkpoint,并且checkpoint间隔时间已设置。
  2. 检查点太小。如果您的检查点太小,则可能无法捕获到足够的数据来生成有意义的输出。尝试增加检查点的大小。
  3. 数据未被正确写入检查点。请确保您的数据源和接收器已正确配置,并且数据已成功写入检查点。
  4. 网络问题。如果您的网络连接不稳定或速度较慢,则可能会导致检查点传输失败或延迟。请确保您的网络连接稳定并具有足够的带宽来支持检查点传输。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568554



相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
7月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之从MySQL同步数据到Doris时,历史数据时间字段显示为null,而增量数据部分的时间类型字段正常显示的原因是什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
消息中间件 SQL 关系型数据库
实时计算 Flink版操作报错之错误提示“null column 15 Encountered at line 43”如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
4月前
|
SQL 数据采集 存储
NULL 值与零或空格相同吗?详尽解析
【8月更文挑战第31天】
410 0
|
6月前
|
SQL 关系型数据库 MySQL
MySQL外键约束行为解析:CASCADE, NO ACTION, RESTRICT, SET NULL
MySQL外键约束行为解析:CASCADE, NO ACTION, RESTRICT, SET NULL
551 0
|
7月前
|
消息中间件 SQL 关系型数据库
实时计算 Flink版产品使用合集之出现了null值,如何过滤
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
77 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
82 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
67 0
|
4天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
4天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多