NumPy 分割与搜索数组详解

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: NumPy 的 `np.array_split()` 函数用于分割数组。基本语法是 `np.array_split(array, indices_or_sections, axis=None)`,它接受一个 NumPy 数组和分割参数,按指定轴进行分割。示例:将 `[1, 2, 3, 4, 5, 6]` 分割成 3 个子数组,结果是 `[[1, 2], [3, 4], [5, 6]]`。注意,超出数组范围的分割位置会导致异常,且元素数量可能根据需要调整。`np.array_split()` 返回子数组的列表。可以按列分割、使用掩码或不均匀分割。练习:将 `arr = [1, 2, 3, 4,

NumPy 分割数组

NumPy 提供了 np.array_split() 函数来分割数组,将一个数组拆分成多个较小的子数组。

基本用法

语法:

np.array_split(array, indices_or_sections, axis=None)

array: 要分割的 NumPy 数组。
indices_or_sections: 指定分割位置的整数列表或要包含每个子数组的元素数量的列表。
axis: 可选参数,指定要分割的轴。默认为 0(即行分割)。

示例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])

# 将数组分割成 3 个子数组
new_arrays = np.array_split(arr, 3)
print(new_arrays)  # 输出:
                        # [array([1, 2]), array([3, 4]), array([5, 6])]

# 指定分割位置
new_arrays = np.array_split(arr, [2, 5])
print(new_arrays)  # 输出:
                        # [array([1, 2]), array([3, 4]), array([5, 6])]

# 沿列分割
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
new_arrays = np.array_split(arr, 3, axis=1)
print(new_arrays)  # 输出:
                        # [array([[1, 4, 7]]), array([[2, 5, 8]]), array([[3, 6, 9]])]

注意事项

如果 indices_or_sections 指定的分割位置超出数组范围,则会引发异常。
如果数组元素数量不足以满足分割要求,则会从末尾进行调整。
np.array_split() 返回一个包含子数组的列表。

高级用法

除了基本用法之外,np.array_split() 还可以用于更复杂的分割操作:

使用掩码进行分割: 您可以使用掩码数组来指示哪些元素应该包含在每个子数组中。
不均匀分割: 您可以指定每个子数组包含的元素数量,即使数量不均等。
沿着任意轴分割: 您可以使用 axis 参数指定要分割的轴。

例如,以下代码使用掩码将数组分割成两个子数组,第一个子数组包含所有偶数元素,第二个子数组包含所有奇数元素:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])
mask = arr % 2 == 0
new_arrays = np.array_split(arr, mask)
print(new_arrays)  # 输出:
                        # [array([2, 4, 6]), array([1, 3, 5])]

练习

使用 np.array_split() 将以下数组 arr 沿行分割成 4 个子数组,每个子数组包含相等数量的元素。

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

在评论中分享您的代码和输出。

Sure, here is the requested Markdown formatted content:

NumPy 搜索数组

NumPy 提供了多种方法来搜索数组中的元素,并返回匹配项的索引。

基本用法:np.where()

语法:

np.where(condition)

condition:用于确定要查找的元素的布尔条件。

功能:

np.where() 逐个元素比较条件,并返回满足条件的元素的索引。
它返回一个元组,其中包含一个或多个数组,每个数组表示满足条件的元素的索引。

示例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])

# 查找值为 4 的索引
indices = np.where(arr == 4)
print(indices)  # 输出: (array([3, 5, 6]),)

# 查找大于 5 的元素的索引
indices = np.where(arr > 5)
print(indices)  # 输出: (array([6, 7, 8]),)

搜索排序数组:np.searchsorted()

语法:

np.searchsorted(array, value, side='left')

array:已排序的 NumPy 数组。
value:要搜索的值。
side:可选参数,指定搜索方向。默认为 'left'(从左到右)。

功能:

np.searchsorted() 在排序数组中执行二进制搜索,并返回指定值应插入的位置以保持排序顺序。
它假定输入数组已排序。

示例:

import numpy as np

arr = np.array([1, 3, 5, 7, 9])

# 查找值 7 应插入的索引
index = np.searchsorted(arr, 7)
print(index)  # 输出: 3

# 从右侧查找值 2 应插入的索引
index = np.searchsorted(arr, 2, side='right')
print(index)  # 输出: 1

练习

使用 np.where()np.searchsorted() 正确找到以下数组 arr 中所有等于 3 的元素的索引。

import numpy as np

arr = np.array([1, 2, 3, 4, 3, 3, 6, 7, 8])

在评论中分享您的代码和输出。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

相关文章
|
3月前
|
索引 Python
NumPy 教程 之 Numpy 数组操作 28
NumPy 提供多种数组操作功能,包括修改形状、翻转、连接和分割等。本教程重点介绍元素的添加与删除,如使用 `resize`、`append`、`insert` 和 `delete` 函数。其中 `numpy.insert` 可在指定索引前插入值,支持标量或数组插入。示例展示了不同情况下 `insert` 的使用方法,包括不指定轴时的数组扁平化插入,以及沿特定轴进行广播插入。
36 2
|
3月前
|
数据处理 索引 Python
NumPy 数组操作:和普通操作相较,到底蕴含着怎样令人费解的独特魅力?
【8月更文挑战第19天】NumPy是Python科学计算核心库,提供高效数组操作。不同于Python列表直接列举创建,NumPy用`np.array()`创建数组。两者都支持索引和切片,但NumPy性能更优。数学运算方面,NumPy支持简洁的向量化操作,如`my_array * 2`,无需循环。NumPy还简化了数组形状变换,如使用`reshape()`方法。此外,NumPy数组要求元素类型一致,提高了内存使用效率和计算速度。这些特点使NumPy在科学计算和数据分析中不可或缺。
30 0
|
27天前
|
Python
Numpy学习笔记(四):如何将数组升维、降维和去重
本文介绍了如何使用NumPy库对数组进行升维、降维和去重操作。
32 1
|
1月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
65 10
|
27天前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
23 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
30天前
|
Python
使用 NumPy 进行数组操作的示例
使用 NumPy 进行数组操作的示例
|
1月前
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
82 4
|
1月前
|
机器学习/深度学习 并行计算 调度
CuPy:将 NumPy 数组调度到 GPU 上运行
CuPy:将 NumPy 数组调度到 GPU 上运行
49 1
|
2月前
|
Python
numpy | 插入不定长字符数组测试OK
本文介绍了如何在numpy中创建和操作不定长字符数组,包括插入和截断操作的测试。
|
2月前
|
API Python
Numpy 数组的一些集合操作
Numpy 数组的一些集合操作
28 0