m基于Q-Learning强化学习的路线规划和避障策略matlab仿真

简介: MATLAB 2022a仿真实现了Q-Learning算法在路线规划与避障中的应用,展示了智能体在动态环境中学习最优路径的过程。Q-Learning通过学习动作价值函数Q(s,a)来最大化长期奖励,状态s和动作a分别代表智能体的位置和移动方向。核心程序包括迭代选择最优动作、更新Q矩阵及奖励机制(正奖励鼓励向目标移动,负奖励避开障碍,探索奖励平衡探索与利用)。最终,智能体能在复杂环境中找到安全高效的路径,体现了强化学习在自主导航的潜力。

1.算法仿真效果
matlab2022a仿真结果如下:
image.png
image.png
image.png

2.算法涉及理论知识概要
Q-Learning是强化学习中的一种重要算法,它属于无模型(model-free)学习方法,能够使智能体在未知环境中学习最优策略,无需环境的具体模型。将Q-Learning应用于路线规划和避障策略中,智能体(如机器人)能够在动态变化的环境中,自主地探索并找到从起点到终点的最安全路径,同时避开障碍物。

   Q-Learning的核心在于学习一个动作价值函数Q(s,a),该函数表示在状态s下采取动作a后,预期获得的累积奖励。智能体的目标是最大化长期奖励,通过不断更新Q值,最终学会在任何状态下采取最佳行动的策略。

image.png

  在路线规划和避障问题中,状态s可以定义为智能体的位置坐标或环境的特征描述,动作a则可以是移动的方向(上、下、左、右等)。环境中的障碍物会给予负奖励,促使智能体避开;而接近目标位置的动作则给予正奖励,鼓励智能体向目标前进。

  状态空间: 假设环境为一个二维网格,每个格子可以视为一个状态。若网格大小为N×M,则状态空间的大小为N×M。若考虑更精细的状态描述(如距离障碍物的距离),状态空间会相应增大。

  动作空间: 常见的动作集包括上下左右四个基本方向,动作空间大小为4。在更复杂的场景中,可以加入斜向移动,使动作空间扩大到8。

为了在Q-Learning中融入避障策略,可以通过调整奖励机制实现。具体而言:

正奖励: 当智能体朝向目标移动时给予正奖励,距离目标越近,奖励越大。
负奖励: 智能体撞上障碍物或进入无法通行区域时给予负奖励,惩罚力度应足够大以确保智能体学会避免这些状态。
探索奖励: 可以引入探索奖励鼓励智能体探索未知区域,但要平衡探索与利用(Exploitation vs. Exploration)。
基于Q-Learning的路线规划和避障策略,通过不断迭代学习,智能体能够在复杂多变的环境中自主发现安全高效的路径。该方法不仅适用于静态环境,也能通过调整策略适应动态变化的场景,展现了强化学习在自主导航领域的广泛应用前景。

3.MATLAB核心程序
```% 开始迭代
tic;
for ij = 1 : Epoch %Iterasyonlar baslasin.
while true
% 如果到达目标状态,退出循环
if State_cur == scalescale
break
end
% 选择当前状态下的最优动作
[next,action]= max(Qmat(State_cur, :));
% 计算下一状态的坐标
State_next = State_cur + Cact(action);
[x,y] = func_state10(State_next,scale);
if State_next == StateG
Reward = 20;
elseif Map(x,y) == 0
Reward = -10;
else
Reward = -1;
end
% 更新 Q 矩阵
[a,b] = func_state10(State_cur, scale);
% 更新 Q 矩阵
Qmat(State_cur,action) = Qmat(State_cur,action) + Rl
(Reward + Rd * max(Qmat(State_next, :))-Qmat(State_cur,action));
end
% 显示每次迭代访问的状态数
llrq(ij)=length(State_set);
end
times=toc;
% 显示最后的路径
for i=1:length(State_set)
[a,b] = func_state10(State_set(i),scale);
Map(a,b)= 0.5;% 路径上的格子显示为灰色
end
figure;
imagesc(Map);
drawnow;
figure;
plot(llrq);
xlabel('迭代次数');
ylabel('访问状态数');

save Q10.mat times Map llrq
```

相关文章
|
13天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
12天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
13天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
14天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
200 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章

下一篇
无影云桌面