Hadoop MapReduce计算框架

简介: 【5月更文挑战第10天】HadoopMapReduce计算框架

image.png
Hadoop MapReduce是一个使用简便的软件框架,它是Google云计算模型MapReduce的Java开源实现。基于这个框架写出来的应用程序能够运行在由上千万台普通机器组成的大型集群系统中,以可靠且容错的方式并行处理上T级别的数据集。

Hadoop MapReduce具有以下几个技术特点:

  1. 分布式处理:MapReduce将问题分解成独立的任务,并在多台计算机上并行处理,从而提高计算速度,适应大规模数据处理。
  2. 容错性:MapReduce框架在处理数据时会自动检测错误并进行重新计算,确保计算结果的准确性。
  3. 可伸缩性:MapReduce框架可以方便地进行横向扩展,即通过增加计算节点来提高处理能力。
  4. 简单易用:MapReduce编程模型相对简单,使用Map和Reduce两种基本操作就可以完成大部分数据处理任务。
  5. 适合非交互式计算:MapReduce适用于一次性大规模数据处理,不适合需要即时交互的应用场景。
  6. 适合数据并行计算:MapReduce适用于数据集的并行计算,而不适用于计算量很大但是没有明显的数据并行结构的任务。

Hadoop MapReduce的工作原理可以简述为以下几个步骤:

  1. 分割输入数据:首先,输入数据会被分割成多个小的数据块,这些数据块可以分布在不同的计算节点上。
  2. 映射(Map)阶段:每个计算节点会执行一组映射函数,将输入数据块中的每个记录转化为一组键值对(Key-Value Pair),其中键表示要处理的数据的特定属性,而值则是与此键相关的数据。映射函数可以并行执行,并产生一组中间键值对。
  3. 合并与排序:所有的中间键值对根据键进行合并和排序,以便将相同键的值聚合到一起。
  4. 归约(Reduce)阶段:合并后的中间键值对被传递给一组归约函数,这些函数会对键值对进行进一步处理和聚合,生成最终的输出结果。同样,归约函数可以并行执行。
  5. 输出结果:最终的结果会被输出到指定的文件系统或数据库中,并可供后续处理和分析。

Hadoop MapReduce的应用场景非常广泛,包括但不限于:

  1. 日志分析:通过MapReduce框架可以快速处理大量的日志数据,提取关键信息,进行统计和分析,从而帮助企业做出决策。
  2. 推荐系统:通过MapReduce框架可以对用户行为数据进行处理,分析用户的兴趣和偏好,从而为用户提供个性化的推荐。
  3. 搜索引擎:MapReduce框架可以用于处理和索引庞大的网页数据,提高搜索引擎的查询性能和准确性。
  4. 社交网络分析:MapReduce框架可以用于处理社交网络中的大规模社交数据,分析用户之间的关系和行为,从而洞察用户的社交网络特征。

以上信息仅供参考,如需了解更多关于Hadoop MapReduce计算框架的信息,建议查阅相关书籍或咨询专业人士。

目录
相关文章
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
92 2
|
1月前
|
数据采集 分布式计算 Hadoop
使用Hadoop MapReduce进行大规模数据爬取
使用Hadoop MapReduce进行大规模数据爬取
|
3月前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
66 1
|
3月前
|
存储 SQL 消息中间件
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
Hadoop-26 ZooKeeper集群 3台云服务器 基础概念简介与环境的配置使用 架构组成 分布式协调框架 Leader Follower Observer
58 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
131 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
59 0
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
75 0
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
206 6
|
19天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
55 4
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
140 2