CVPR 2024:借助神经结构光,浙大实现动态三维现象的实时采集重建

简介: 【5月更文挑战第14天】

在CVPR 2024会议上,来自浙江大学的研究人员提出了一种名为“Neural Structured Illumination”的创新框架,用于实时采集和重建高质量的动态三维现象。该框架的核心是一个深度神经网络,包括一个编码器,它直接将结构光映射到采集过程中,一个解码器,它从单像素测量中预测出1D密度分布,以及一个聚合模块,它将每个相机预测的密度组合成一个单一的体积。

通过这种方式,该框架能够实现物理采集和计算重建的自动和联合优化,并灵活地适应不同的硬件配置。在实验中,研究人员使用了一个轻量级的设置,包括一个现成的投影仪和一个或多个相机,实现了每秒40个体积的采集和重建性能,空间分辨率为1283。

与最先进的技术相比,该框架在真实和合成实验中表现出色,并评估了各种因素对管道的影响。这种方法在科学研究领域具有广泛的应用前景,如飞机设计、车辆制造、天气预报和现代显微镜等。

然而,该框架也存在一些局限性。首先,它依赖于结构光的优化,这可能需要额外的计算资源和时间。其次,尽管该框架在实验中表现出色,但在实际应用中可能需要进一步的优化和改进。

论文链接:https://svbrdf.github.io/publications/realtimedynamic/realtimedynamic.pdf

目录
相关文章
|
7月前
|
自然语言处理 测试技术 计算机视觉
ICLR 2024:谁说大象不能起舞! 重编程大语言模型实现跨模态交互的时序预测
【4月更文挑战第22天】**TIME-LLM** 论文提出将大型语言模型重编程用于时序预测,克服数据稀疏性问题。通过文本原型重编码和Prompt-as-Prefix策略,使LLMs能处理连续时序数据。在多基准测试中超越专业模型,尤其在少量样本场景下效果突出。但面临跨领域泛化、模型调整复杂性和计算资源需求的挑战。[论文链接](https://openreview.net/pdf?id=Unb5CVPtae)
117 2
|
机器学习/深度学习 传感器 编解码
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(中)
本综述根据三个基本的CV任务和不同的数据流类型,全面调查了100多种不同的视觉Transformer,并提出了一种分类法,根据其动机、结构和应用场景来组织代表性方法。由于它们在训练设置和专用视觉任务上的差异,论文还评估并比较了不同配置下的所有现有视觉Transformer。此外,论文还揭示了一系列重要但尚未开发的方面,这些方面可能使此类视觉Transformer能够从众多架构中脱颖而出,例如,松散的高级语义嵌入,以弥合视觉Transformer与序列式之间的差距。最后,提出了未来有前景的研究方向。
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(中)
|
13天前
|
并行计算 算法 C++
《探索C++在3D重建中的算法与技术要点》
3D重建是计算机视觉的重要技术,广泛应用于多个行业。C++因其高效性和对底层硬件的良好控制,成为实现3D重建算法的首选语言。本文介绍了多视图立体视觉、立体匹配、点云处理与重建、网格重建与优化、纹理映射及CUDA加速等关键技术,详细阐述了各算法的原理和C++实现要点。
64 18
|
5月前
|
机器学习/深度学习 搜索推荐 知识图谱
图神经网络加持,突破传统推荐系统局限!北大港大联合提出SelfGNN:有效降低信息过载与数据噪声影响
【7月更文挑战第22天】北大港大联手打造SelfGNN,一种结合图神经网络与自监督学习的推荐系统,专攻信息过载及数据噪声难题。SelfGNN通过短期图捕获实时用户兴趣,利用自增强学习提升模型鲁棒性,实现多时间尺度动态行为建模,大幅优化推荐准确度与时效性。经四大真实数据集测试,SelfGNN在准确性和抗噪能力上超越现有模型。尽管如此,高计算复杂度及对图构建质量的依赖仍是待克服挑战。[详细论文](https://arxiv.org/abs/2405.20878)。
90 5
|
传感器 计算机视觉
多级式多传感器信息融合中的状态估计(Matlab代码实现)
多级式多传感器信息融合中的状态估计(Matlab代码实现)
145 0
|
机器学习/深度学习 传感器 编解码
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(上)
本综述根据三个基本的CV任务和不同的数据流类型,全面调查了100多种不同的视觉Transformer,并提出了一种分类法,根据其动机、结构和应用场景来组织代表性方法。由于它们在训练设置和专用视觉任务上的差异,论文还评估并比较了不同配置下的所有现有视觉Transformer。此外,论文还揭示了一系列重要但尚未开发的方面,这些方面可能使此类视觉Transformer能够从众多架构中脱颖而出,例如,松散的高级语义嵌入,以弥合视觉Transformer与序列式之间的差距。最后,提出了未来有前景的研究方向。
一文详解视觉Transformer在CV中的现状、趋势和未来方向(分类/检测/分割/多传感器融合)(上)
|
传感器 机器学习/深度学习 算法
CVPR 2023 | 移动传感器引导的跨时节六自由度视觉定位,准确且高效
CVPR 2023 | 移动传感器引导的跨时节六自由度视觉定位,准确且高效
232 0
|
机器学习/深度学习 数据可视化
有效捕捉目标级别语义信息,之江实验室&浙大提出再注意机制TRT
有效捕捉目标级别语义信息,之江实验室&浙大提出再注意机制TRT
138 0
|
机器学习/深度学习 存储 并行计算
NeurIPS 2021 Spotlight | 准确、快速、内存经济,新框架MEST实现边缘设备友好的稀疏训练
NeurIPS 2021 Spotlight | 准确、快速、内存经济,新框架MEST实现边缘设备友好的稀疏训练
113 0
|
机器学习/深度学习 Web App开发 自动驾驶
驾驭白夜场景、刷新多个SOTA,苏黎世联邦理工用高效时序建模提升多目标追踪与分割
驾驭白夜场景、刷新多个SOTA,苏黎世联邦理工用高效时序建模提升多目标追踪与分割
137 0

热门文章

最新文章