神经网络中的神经元和激活函数介绍

简介: 神经网络中的神经元和激活函数介绍

1、什么是人工神经网络

神经网络能够利用多层神经元学习复杂的模式,这些神经元会对数据进行数学变换。

输入层和输出层之间的层被称为“隐藏层”。

神经网络具有一种独特的能力,可以学习并识别数据中的复杂特征关系,而这些关系可能对于其他传统的算法来说难以直接发现和建模。

多层感知器(MLP)

上面的图表是一个多层感知器(MLP)。

一个MLP至少要有三层:输入层、隐藏层和输出层。

它们是完全连接的,即一层中的每个节点都通过权重与下一层中的每个节点相连。

深度学习这一术语用于指代由许多隐藏层构建的机器学习模型:深度神经网络。

2、什么是神经元

人工神经元(也被称为感知器)是一个数学函数。

它接收一个或多个输入,这些输入乘以被称为“权重”的值并相加。

然后,这个值被传递给一个非线性函数,称为激活函数,以生成神经元的输出。

  • x值指的是输入,要么是原始特征,要么是前一层隐藏层的输入。
  • 在每一层中,还有一个偏置b,它可以帮助更好地拟合数据。
  • 神经元将值a传递给下一层中与之连接的所有神经元,或者将其作为最终值返回。

计算从线性方程开始:

在添加非线性激活函数之前:

3、什么是激活函数

激活函数是神经元应用的一个非线性函数,用于在网络中引入非线性特性。

如果第一个变量的变化对应于第二个变量的恒定变化,那么这种关系就是线性的。

非线性关系意味着第一个变量的变化并不一定对应于第二个变量的恒定变化。

然而,它们可能会相互影响,但看起来是不可预测的。

通过引入非线性,我们可以更好地捕捉数据中的模式。

这是一个直观的例子。

最佳拟合线性和非线性模型

线性激活函数

  • 直线函数:a是一个常数
  • 值可能会变得非常大
  • 仅线性函数本身无法捕捉复杂的模式

Sigmoid激活函数

  • 是一个非线性函数,因此可以捕捉更复杂的模式
  • 输出值是有界的,因此不会变得太大
  • 可能会受到“梯度消失”的影响

双曲正切激活函数

  • 是一个非线性激活函数,因此可以捕捉更复杂的模式
  • 输出值是有界的,因此不会变得太大
  • 可能会受到“梯度消失”的影响

修正线性单元(ReLU)激活函数

  • 是一个非线性函数,因此可以捕捉更复杂的模式
  • 值可能会变得非常大
  • 由于它不允许负值,因此可能无法捕捉某些模式
  • 梯度可能趋于0,因此权重不会更新:“ReLU死亡问题”

Leaky ReLU激活函数

  • 是一个非线性函数,因此可以捕捉更复杂的模式
  • 尝试解决“ReLU死亡问题”
  • 值可能会变得非常大

另外,除了使用0.01,它也可以是一个参数 ,该参数在训练过程中与权重一起学习。这被称为参数化ReLU (PReLU)。

Softmax激活函数

  • 每个值的范围在0到1之间,并且所有值的和为1,因此可用于建模概率分布
  • 仅用于输出层,而不是整个网络

参考: 人工智能学习指南

目录
相关文章
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【8月更文挑战第1天】在当今科技飞速发展的时代,AI已成为日常生活中不可或缺的一部分。神经网络作为AI的核心,通过模拟人脑中的神经元连接方式处理复杂数据模式。利用Python及其强大的库TensorFlow,我们可以轻松构建神经网络模型。示例代码展示了如何建立一个含有两层隐藏层的简单神经网络,用于分类任务。神经网络通过反向传播算法不断优化权重和偏置,从而提高预测准确性。随着技术的进步,神经网络正变得越来越深、越来越复杂,能够应对更加艰巨的挑战,推动着AI领域向前发展。
53 2
|
2月前
|
机器学习/深度学习 编解码
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
本文介绍了九种常用的神经网络激活函数:Sigmoid、tanh、ReLU、ReLU6、Leaky ReLU、ELU、Swish、Mish和Softmax,包括它们的定义、图像、优缺点以及在深度学习中的应用和代码实现。
171 0
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
52 10
|
2月前
|
机器学习/深度学习 数据可视化 算法
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
|
4月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
60 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
4月前
|
机器学习/深度学习 算法
神经网络中激活函数的重要性
【8月更文挑战第23天】
60 0
|
4月前
|
机器学习/深度学习 Shell 计算机视觉
一文搞懂 卷积神经网络 卷积算子应用举例 池化 激活函数
这篇文章通过案例详细解释了卷积神经网络中的卷积算子应用、池化操作和激活函数,包括如何使用卷积算子进行边缘检测和图像模糊,以及ReLU激活函数如何解决梯度消失问题。
|
5月前
|
机器学习/深度学习
神经网络可能不再需要激活函数?Layer Normalization也具有非线性表达!
【7月更文挑战第14天】研究表明,层归一化(LayerNorm)可能具备非线性表达能力,挑战了神经网络对激活函数的依赖。在LN-Net结构中,仅使用线性层与LayerNorm就能实现复杂分类,其VC维度下界证明了非线性表达。尽管如此,是否能完全替代激活函数及如何有效利用这一特性仍需更多研究。[arXiv:2406.01255]
68 5
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
**算法预览:** 图像显示无水印的2022a版MATLAB运行结果 **软件版本:** MATLAB 2022a **核心代码片段:** 省略展示 **理论概述:** NCL集成BP网络利用负相关提升泛化,结合多个弱模型减少错误关联。通过λ参数控制模型间负相关程度,λ>0增强集成效果,提高预测准确性和系统稳健性。

热门文章

最新文章