OpenAI官方: Sora不止是模型,更是世界模拟器!

简介: OpenAI官方: Sora不止是模型,更是世界模拟器!

cc20575a42280ff5eb248ab7383375ff.png

在人工智能领域,视频数据的生成建模一直是一个极具挑战和创新的研究方向。从循环网络到生成对抗网络,再到自回归变换器和扩散模型,无数的尝试为我们展现了这一技术的日新月异。而今,OpenAI带来了其最新研究成果——Sora视频生成模型,重新定义了我们对AI生成内容的认知

不能只观望 AIGC ,随着潮流狂欢,更应该走进去了解它,成为它的主人!


今天,我们来根据OpenAI官方的文章,深入了解 Sora 背后的技术。

Sora不止是模型,是世界模拟器

据OpenAI官方网站发布,Sora不仅是一个具有通用性的视觉数据模型,它更是一个世界模拟器。具备生成不同持续时间、宽高比和分辨率视频和图像的能力,Sora能产出长达一分钟的高清视频,开启了视频生成领域的新纪元。

Sora的核心优势在于其高度的适应性和多样性。无论是简短的动画还是复杂丰富的场景视频,Sora均能通过简易的文本提示实现创作。这一技术的推出为内容创作者提供了极大的便捷,同时也让模拟真实世界的可能性得以扩展。


这是OpenAI 官方放出的 Sora视频,长达55s:

https://openai.com/research/video-generation-models-as-world-simulators

Sora 背后的技术

在Sora之前也有许多的视频生成模型,例如Runway、PiKa这些工作通常专注于狭窄范围的视觉数据、较短的视频或固定大小的视频。Sora是一种通用的视觉数据模型——它可以生成持续时间、纵横比和分辨率各异的视频和图像,长达一分钟的高清视频

它背后到底有什么秘密?

把视觉数据转化为补丁(Turning visual data into patches)

大型语言模型通过训练超大规模的数据而获得强大的能力,而这些语言的模型的程度很大程度上归功于 Token。

基于这个灵感,Sora 由此使用了视觉 Patch,在高层次上,我们首先通过将视频压缩到一个低维潜在空间来将视频转换为小Patch,随后将这个表示分解为时空Patch。

视频压缩网络(Video Compression Network)

该网络通过降维技术把原始视频转换成一个压缩的潜在表示。这个网络使得模型能够在一个更简洁的空间内操作,提升了处理视频时的效率。

时空潜在补丁(Spacetime Latent Patches)

Sora模型将视频划分为一系列的时空补丁,这些补丁作为变换器网络的令牌。补丁化的处理方式提供了一种有效的视觉数据表示,便于网络捕捉视频的时空特征。

视频扩展变换器(Scaling Transformers)

变换器网络(Transformers)在许多领域,如语言、视觉和音频处理中展现出卓越的性能。Sora使用这种架构来扩展视频生成能力,这些变换器被训练用来预测原始的“干净”补丁,从而生成清晰的视频输出。


条件扩散模型(Conditional Diffusion Models)

Sora作为一个扩散模型,基于输入的噪声补丁和条件信息(如文本提示)生成视频。通过这种方式,Sora能够从带有一定随机性的输入中逐步生成出清晰、有意义的视频内容。

并且随着训练计算量的增加,样本质量明显提高,如下图所示。

可变持续时间、分辨率、宽高比(Variable Durations, Resolutions, Aspect Ratios)

过去生成图像和视频的方法通常会将视频调整大小、裁剪或裁切到标准尺寸——例如,4秒长的视频,分辨率为256x256。我们发现,以原始尺寸对数据进行训练反而带来了几个好处。


Sora训练时不限制视频的尺寸,因此它能够生成各种尺寸的视频。这意味着Sora不仅能生成标准大小的视频,还能创建更为多样化的视频格式,以适应不同的播放设备和用途。


image.png

总的来说,这让Sora能够实现灵活取样,并且改善构图,最终实现不错的视频效果。

语言理解(Language Understanding)

训练文本到视频生成系统需要大量带有相应文字标题的视频。OpenAI将在DALL·E 3中引入的重新标注技术应用于视频。首先训练一个高度描述性的标注模型,然后使用它为训练集中的所有视频生成文字标题。研究结果发现,在高度描述性的视频标题上进行训练可以提高文本的准确性以及视频的整体质量。Sora利用高度描述性的视频标题进行训练,提高对文本的理解。类似于DALL·E,Sora也能将简短的用户提示转换成更详细的说明,提高视频输出与文本提示的一致性

通过以上这些高级技术的结合,Sora模型能够生成高质量的视频内容,同时在视频生成的效率和多样性上取得了显著的进步。

展望未来

Sora作为一个模拟器,其能力展示虽有局限,但已昭示出扩大视频模型规模是一个有前途的发展方向。它的新兴能力展现了模拟现实世界和数字世界的潜能,而对物理交互的模拟尚需精进。

保持好奇,继续探索!

AI 是我们所有人的机会,请抓紧他!

相关文章
|
2月前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
226 2
|
19天前
|
Go 开发工具
百炼-千问模型通过openai接口构建assistant 等 go语言
由于阿里百炼平台通义千问大模型没有完善的go语言兼容openapi示例,并且官方答复assistant是不兼容openapi sdk的。 实际使用中发现是能够支持的,所以自己写了一个demo test示例,给大家做一个参考。
|
5天前
|
编解码 人工智能 自然语言处理
OpenAI Sora 怎么用:最新详细教程-新手小白必看 | Sora 如何使用?(202412月最新更新)
OpenAI的Sora模型现已正式开放使用,本文将详细介绍Sora的注册、使用方法及视频生成技巧。Sora能根据简洁文本生成长达60秒的高质量视频,具备远超以往模型的时间连续性和视觉效果。文章涵盖从零开始的准备工作、操作界面介绍、视频生成设置、编辑功能(如Re-cut、Remix、Blend、Loop)以及Storyboard故事板功能,帮助新手轻松上手世界顶级AI视频创作工具。此外,还解答了关于Sora的常见问题,包括订阅计划、视频类型和局限性等,适合全媒体创作者参考。
59 3
OpenAI Sora 怎么用:最新详细教程-新手小白必看 | Sora 如何使用?(202412月最新更新)
|
14天前
|
人工智能 编解码 机器人
OpenAI又出王炸了!正式推出超强AI视频模型Sora
OpenAI正式推出AI视频生成模型Sora,可根据文本提示生成逼真视频,面向美国及其他市场ChatGPT付费用户开放。Sora Turbo支持生成长达20秒的视频及多种变体,具备模拟物理世界的新兴能力,可创建多镜头视频,提供Remix和Storyboard等创新功能。
43 4
OpenAI又出王炸了!正式推出超强AI视频模型Sora
|
22天前
|
人工智能 自然语言处理 计算机视觉
OpenAI发布sCM提升50倍效率,扩散模型重大技术突破!
OpenAI近期发布了Simplified Consistency Models (sCM) 技术,这是在扩散模型基础上的重大改进,实现了50倍效率提升。sCM通过简化和稳定连续时间一致性模型的训练过程,解决了传统模型中的离散化误差和训练不稳定性问题,显著提升了生成模型的性能和效率。在多个数据集上的测试结果表明,sCM不仅超越了现有模型,还在生成模型的实际应用中展现了巨大潜力。论文地址:https://arxiv.org/abs/2410.11081
42 3
|
3月前
|
机器学习/深度学习 搜索推荐 算法
软件工程师,OpenAI Sora驾到,快来围观
软件工程师,OpenAI Sora驾到,快来围观
148 69
|
1月前
|
人工智能 计算机视觉 网络架构
OpenAI攻克扩散模型短板,清华校友路橙、宋飏合作最新论文
扩散模型在生成AI领域取得显著成果,但其训练不稳定性和采样速度慢限制了发展。OpenAI与清华校友合作,提出连续时间一致性模型(CMs),通过TrigFlow等创新解决了这些问题,大幅提升了训练稳定性和计算效率,实现了与最优模型相当的样本质量,同时减少了计算资源消耗。
43 2
|
1月前
|
SQL 机器学习/深度学习 人工智能
今日 AI 开源|共 4 项|DeepSeek 推出新一代 AI 推理模型,实力比肩 OpenAI o1-preview!
本文介绍了四个最新的 AI 开源项目,涵盖多模态生成式 AI、自然语言到 SQL 转化、多模态数学推理和复杂逻辑推理等多个领域,为 AI 应用开发提供了丰富的资源和工具。
124 0
今日 AI 开源|共 4 项|DeepSeek 推出新一代 AI 推理模型,实力比肩 OpenAI o1-preview!
|
2月前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。
|
3月前
|
搜索推荐 算法
模型小,还高效!港大最新推荐系统EasyRec:零样本文本推荐能力超越OpenAI、Bert
【9月更文挑战第21天】香港大学研究者开发了一种名为EasyRec的新推荐系统,利用语言模型的强大文本理解和生成能力,解决了传统推荐算法在零样本学习场景中的局限。EasyRec通过文本-行为对齐框架,结合对比学习和协同语言模型调优,提升了推荐准确性。实验表明,EasyRec在多个真实世界数据集上的表现优于现有模型,但其性能依赖高质量文本数据且计算复杂度较高。论文详见:http://arxiv.org/abs/2408.08821
89 7