【LLM】智能学生顾问构建技术学习(Lyrz SDK + OpenAI API )

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 【5月更文挑战第13天】智能学生顾问构建技术学习(Lyrz SDK + OpenAI API )

[toc]


如果您是一名学生,你正在寻求个性化顾问来帮助你的课程作业,那么AI学生顾问正好可以帮助你,这是一种创新的解决方案,利用 AI 的力量彻底改变学生咨询。

Lyzr Student Advisor 应用程序的核心是为了让学生在学术之旅中发挥作用,通过利用 Lyzr 聊天机器人的功能,该应用程序提供量身定制的见解和建议,以帮助学生在课程作业中脱颖而出、发展职业轨迹并促进个人成长。使用 Lyzr SDK,制作您自己的 GenAI 应用程序变得轻而易举,只需几行代码即可快速启动和运行。

查看Lyzr SDK: https://docs.lyzr.ai/homepage

创建文件 app.py ,导入依赖库:

import os
import shutil
import streamlit as st
from lyzr import ChatBot

该代码首先导入用于文件处理的基本模块,例如 os 和 shutil,以及用于创建 Web 应用程序(如 streamlit)。此外,从 lyzr 模块导入 ChatBot 类,这表明聊天机器人功能的潜在集成可能利用自然语言处理功能。

使用 Streamlit 的密钥管理工具初始化 OpenAI API 密钥,通过访问安全存储在 Streamlit 密钥中的特定密钥(其中安全存储了 OpenAI API 密钥),它取代了占位符“OPENAI_API_KEY”,确保了对 Streamlit 应用程序中 OpenAI API 的安全访问。

# Set the OpenAI API key
os.environ["OPENAI_API_KEY"] = st.secrets["apikey"]
# Function to remove existing files
def remove_existing_files(directory):
    for filename in os.listdir(directory):
        file_path = os.path.join(directory, filename)
        try:
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.unlink(file_path)
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
        except Exception as e:
            st.error(f"Error while removing existing files: {e}")

函数 remove_existing_files(directory) 用于擦除指定目录中的所有文件和目录。它使用 os.listdir(directory) 遍历指定目录中的每个项目。对于遇到的每个项目,它通过将目录路径与项目的文件名组合在一起来形成完整的文件路径。随后,它尝试使用 os.unlink() 来消除文件或 shutil.rmtree() 来消除目录的项目。如果在此删除过程中出现任何错误,它会处理它们并使用 Streamlit 的 st.error() 函数显示错误通知。

# Set the local directory
data_directory = "data"

# Create the data directory if it doesn't exist
os.makedirs(data_directory, exist_ok=True)

# Remove existing files in the data directory
remove_existing_files(data_directory)

这些代码行处理文件系统中名为“data”的本地目录。首先,将变量 data_directory 设置为字符串 “data”,指示要管理的目录的名称。然后,代码使用 os.makedirs(data_directory, exist_ok=True) 创建“data”目录。

exist_ok=True 参数可确保仅当目录尚不存在时才创建该目录。在此之后,调用函数 remove_existing_files(data_directory) 以清除“data”目录中任何预先存在的文件或子目录,确保它是空的并准备好使用。

# Function to implement RAG Lyzr Chatbot
def rag_implementation(file_path):
    # Check the file extension
    _, file_extension = os.path.splitext(file_path)

    if file_extension.lower() == ".pdf":
        # Initialize the PDF Lyzr ChatBot
        rag = ChatBot.pdf_chat(
            input_files=[file_path],
            llm_params={"model": "gpt-4"},
        )
    elif file_extension.lower() == ".docx":
        # Initialize the DOCX Lyzr ChatBot
        rag = ChatBot.docx_chat(
            input_files=[file_path],
            llm_params={"model": "gpt-4"},
        )
    else:
        # Handle unsupported file types
        raise ValueError("Unsupported file type. Only PDF and DOCX files are supported.")

    return rag

rag_implementation,此函数用于根据提供的文件类型实现 RAG Lyzr 聊天机器人。它首先从给定file_path中提取文件扩展名。如果文件是 PDF,则使用 ChatBot 类中的 pdf_chat 方法初始化专为 PDF 文件设计的 Lyzr ChatBot。同样,如果文件是 DOCX 文档,则使用 docx_chat 方法初始化 DOCX 文件的 ChatBot。

这两个初始化过程都包括指定输入文件和设置语言模型参数,此处定义为 {“model”: “gpt-4”}。如果文件扩展名与“.pdf”或“.docx”不匹配,则该函数将引发 ValueError,指示仅支持 PDF 和 DOCX 文件。

# Function to get Lyzr response
def advisor_response(file_path, ambition):
    rag = rag_implementation(file_path)
    prompt = f"""Your name is Isha, always remember that, and you are a student advisor at a university. Always introduce yourself.

                 To generate advice for the uploaded document, please follow the instructions below:

                      - Course work and grades: Being a Student Advisor, look into the uploaded marksheet and give important insights about where the student performance lies.

                      - Ambition: Informed by the student's ambition (replace {ambition}), advise them on the steps required to excel in their chosen path.

                      - Academic advice: Being a Student Advisor, look into the uploaded document and give important insights about where the student's strength and weaknesses lie and how to improve them.

                      - Career guidance: Being a student Advisor utilize the student's ambition, coursework, and grades, offer pertinent suggestions for their career trajectory.

                      - Personal development: Being a student Advisor offer guidance on fostering high productivity through effective time management techniques and engaging in relevant extracurricular activities.

                      - Please ensure adherence to these steps and provide responses akin to a student advisor. """

    response = rag.chat(prompt)
    return response.response

此advisor_response函数利用 rag_implementation 函数初始化 Lyzr ChatBot。然后,它会生成一个提示,其中包含有关建议各个方面的说明和占位符,例如课程作业、抱负、学术建议、职业指导和个人发展。占位符 {ambition} 用于将学生的抱负动态地合并到提示中。

该函数会向 Lyzr ChatBot 提示此消息,指示它根据上传的文档和提供的提示提供建议。ChatBot 处理提示并生成响应,然后由函数返回。该回复预计将包含针对学生的学术旅程和抱负量身定制的建议和见解。

# File upload widget
uploaded_file = st.file_uploader("Upload your Marksheet⬇️", type=["pdf", "docx"])

if uploaded_file is not None:
    # Save the uploaded file to the data directory
    file_path = os.path.join(data_directory, uploaded_file.name)
    with open(file_path, "wb") as file:
        file.write(uploaded_file.getvalue())

    # Display the path of the stored file
    st.success("File successfully saved")

    # User input for student's ambition
    ambition = st.text_input("What is your Ambition?")

    # Generate advice button
    if st.button("Get Advice"):
        if not ambition:
            st.warning("Please enter your ambition.")
        else:
            automatic_response = advisor_response(file_path, ambition)
            st.markdown(automatic_response)

本部分代码使用 Streamlit 的 file_uploader 函数创建文件上传小部件。系统会提示用户上传其标记表文件,支持的文件类型仅限于 PDF 和 DOCX 格式。

文件上传后,代码将上传的文件保存到指定的data_directory,确保将其存储在本地以供进一步处理。将显示一条成功消息,以确认文件已成功保存。

接下来,系统会提示用户通过文本输入字段输入他们的想法。这些信息对于生成针对用户职业抱负量身定制的个性化建议至关重要。

最后,标有“获取建议”的按钮允许用户触发建议生成过程。在继续操作之前,代码会检查目标字段是否为空,并在必要时提示用户输入其目标。如果提供了 ambition,则调用 advisor_response 函数,并将path和 ambition 作为参数。然后使用 Streamlit 的 Markdown 函数向用户显示生成的建议。

以上就是基于Lyzr SDK实现的学生顾问的核心内容,希望对同学们有所帮助。

目录
相关文章
|
2月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
494 2
|
3天前
|
开发框架 人工智能 安全
Promptic:轻量级 LLM 应用开发框架,提供完善的底层功能,使开发者更专注于构建上层功能
Promptic 是一个轻量级的 LLM 应用开发框架,支持通过一行代码切换不同的 LLM 服务提供商。它提供了类型安全的输出、流式支持、内置对话记忆、错误处理和重试等功能,帮助开发者专注于构建功能,而不是底层的复杂性。
26 6
Promptic:轻量级 LLM 应用开发框架,提供完善的底层功能,使开发者更专注于构建上层功能
|
1月前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
104 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
2月前
|
存储 人工智能 算法
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
为了帮助更多人掌握大模型技术,尼恩和他的团队编写了《LLM大模型学习圣经》系列文档,包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构,基于LLM+RAG构建生产级企业知识库》和《从0到1吃透大模型的顶级架构》。这些文档不仅系统地讲解了大模型的核心技术,还提供了实战案例和配套视频,帮助读者快速上手。
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
|
2月前
|
机器学习/深度学习 数据采集 人工智能
大模型体验报告:阿里云文档智能 & RAG结合构建LLM知识库
大模型体验报告:阿里云文档智能 & RAG结合构建LLM知识库
|
2月前
|
存储 安全 开发工具
百度公共IM系统的Andriod端IM SDK组件架构设计与技术实现
本文主要介绍了百度公共IM系统的Andriod端IM SDK的建设背景、IM SDK主要结构和工作流程以及建设过程遇到的问题和解决方案。
57 3
|
2月前
|
存储 文字识别 算法
解析!文档扫描 SDK 中的高级图像处理技术
本博客讨论了图像质量在文档扫描中的重要性,解决了扫描过程中遇到的常见挑战,以及文档扫描 SDK 利用先进的图像处理技术来应对这些挑战。
|
3月前
|
Cloud Native 关系型数据库 Serverless
基于阿里云函数计算(FC)x 云原生 API 网关构建生产级别 LLM Chat 应用方案最佳实践
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
600 22
|
2月前
|
缓存 安全 开发工具
记 Kylin 麒麟系统安全中心拦截导致 dotnet sdk 找不到 OpenSsl 构建失败
【10月更文挑战第28天】当Kylin麒麟系统安全中心导致.NET SDK找不到OpenSsl并构建失败时,可从检查安全中心拦截规则、确认OpenSsl安装和配置、验证.NET SDK配置及重新构建项目四个方面入手解决。包括查看拦截记录、调整拦截策略、检查OpenSsl安装与库文件路径、配置.NET SDK依赖及环境变量等步骤。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
文档智能和检索增强生成(RAG)——构建LLM知识库
本次体验活动聚焦于文档智能与检索增强生成(RAG)结合构建的LLM知识库,重点测试了文档内容清洗、向量化、问答召回及Prompt提供上下文信息的能力。结果显示,系统在自动化处理、处理效率和准确性方面表现出色,但在特定行业术语识别、自定义向量化选项、复杂问题处理和Prompt模板丰富度等方面仍有提升空间。
80 0

热门文章

最新文章