3、【KV260开发】Vitis AI library APIs

简介: 3、【KV260开发】Vitis AI library APIs

vitis ai 提供了C/Python两种接口,两种接口函数名称类似,之后的内容主要由C++/C讲解。

四种API

Vitis AI Library提供了以下四种API:

  • Vitis AI Library API_0 based on VART

Vitis AI Library API_1 based on AI Library

Vitis AI Library API_2 based on DpuTask

Vitis AI Library API_3 based on Graph_runner

下面四种API的demo。

VART

如果使用VART(Vitisi AI Runtime Library)进行代码的编写,流程如下:

以resnet50进行图片分类为例,主体代码如下:

//origin:/Vitis-Ai/demo/VART/resnet50/src/main.cc

/**
 * @brief Run DPU Task for ResNet50
 *
 * @param taskResnet50 - pointer to ResNet50 Task
 *
 * @return none
 */
void runResnet50(vart::Runner* runner) {
  /* Mean value for ResNet50 specified in Caffe prototxt */
  vector<string> kinds, images;

  /* Load all image names.*/
  ListImages(baseImagePath, images);
  if (images.size() == 0) {
    cerr << "\nError: No images existing under " << baseImagePath << endl;
    return;
  }

  /* Load all kinds words.*/
  LoadWords(wordsPath + "words.txt", kinds);
  if (kinds.size() == 0) {
    cerr << "\nError: No words exist in file words.txt." << endl;
    return;
  }
  float mean[3] = {104, 107, 123};

  /* get in/out tensors and dims*/
  auto outputTensors = runner->get_output_tensors();
  auto inputTensors = runner->get_input_tensors();
  auto out_dims = outputTensors[0]->get_shape();
  auto in_dims = inputTensors[0]->get_shape();

  auto input_scale = get_input_scale(inputTensors[0]);
  auto output_scale = get_output_scale(outputTensors[0]);

  /*get shape info*/
  int outSize = shapes.outTensorList[0].size;
  int inSize = shapes.inTensorList[0].size;
  int inHeight = shapes.inTensorList[0].height;
  int inWidth = shapes.inTensorList[0].width;

  int batchSize = in_dims[0];

  std::vector<std::unique_ptr<vart::TensorBuffer>> inputs, outputs;

  vector<Mat> imageList;
  int8_t* imageInputs = new int8_t[inSize * batchSize];

  float* softmax = new float[outSize];
  int8_t* FCResult = new int8_t[batchSize * outSize];
  std::vector<vart::TensorBuffer*> inputsPtr, outputsPtr;
  std::vector<std::shared_ptr<xir::Tensor>> batchTensors;
  /*run with batch*/
  for (unsigned int n = 0; n < images.size(); n += batchSize) {
    unsigned int runSize =
        (images.size() < (n + batchSize)) ? (images.size() - n) : batchSize;
    in_dims[0] = runSize;
    out_dims[0] = batchSize;
    for (unsigned int i = 0; i < runSize; i++) {
      Mat image = imread(baseImagePath + images[n + i]);

      /*image pre-process*/
      Mat image2;  //= cv::Mat(inHeight, inWidth, CV_8SC3);
      resize(image, image2, Size(inHeight, inWidth), 0, 0);
      for (int h = 0; h < inHeight; h++) {
        for (int w = 0; w < inWidth; w++) {
          for (int c = 0; c < 3; c++) {
            imageInputs[i * inSize + h * inWidth * 3 + w * 3 + c] =
                (int8_t)((image2.at<Vec3b>(h, w)[c] - mean[c]) * input_scale);
          }
        }
      }
      imageList.push_back(image);
    }

    /* in/out tensor refactory for batch inout/output */
    batchTensors.push_back(std::shared_ptr<xir::Tensor>(
        xir::Tensor::create(inputTensors[0]->get_name(), in_dims,
                            xir::DataType{xir::DataType::XINT, 8u})));
    inputs.push_back(std::make_unique<CpuFlatTensorBuffer>(
        imageInputs, batchTensors.back().get()));
    batchTensors.push_back(std::shared_ptr<xir::Tensor>(
        xir::Tensor::create(outputTensors[0]->get_name(), out_dims,
                            xir::DataType{xir::DataType::XINT, 8u})));
    outputs.push_back(std::make_unique<CpuFlatTensorBuffer>(
        FCResult, batchTensors.back().get()));

    /*tensor buffer input/output */
    inputsPtr.clear();
    outputsPtr.clear();
    inputsPtr.push_back(inputs[0].get());
    outputsPtr.push_back(outputs[0].get());

    /*run*/
    auto job_id = runner->execute_async(inputsPtr, outputsPtr);
    runner->wait(job_id.first, -1);
    for (unsigned int i = 0; i < runSize; i++) {
      cout << "\nImage : " << images[n + i] << endl;
      /* Calculate softmax on CPU and display TOP-5 classification results */
      CPUCalcSoftmax(&FCResult[i * outSize], outSize, softmax, output_scale);
      TopK(softmax, outSize, 5, kinds);
      /* Display the impage */
      bool quiet = (getenv("QUIET_RUN") != nullptr);
      if (!quiet) {
        cv::imshow("Classification of ResNet50", imageList[i]);
        cv::waitKey(10000);
      }
    }
    imageList.clear();
    inputs.clear();
    outputs.clear();
  }
  delete[] FCResult;
  delete[] imageInputs;
  delete[] softmax;
}

/**
 * @brief Entry for runing ResNet50 neural network
 *
 * @note Runner APIs prefixed with "dpu" are used to easily program &
 *       deploy ResNet50 on DPU platform.
 *
 */
int main(int argc, char* argv[]) {
  // Check args
  if (argc != 2) {
    cout << "Usage of resnet50 demo: ./resnet50 [model_file]" << endl;
    return -1;
  }
  auto graph = xir::Graph::deserialize(argv[1]);
  auto subgraph = get_dpu_subgraph(graph.get());
  CHECK_EQ(subgraph.size(), 1u)
      << "resnet50 should have one and only one dpu subgraph.";
  LOG(INFO) << "create running for subgraph: " << subgraph[0]->get_name();
  /*create runner*/
  auto runner = vart::Runner::create_runner(subgraph[0], "run");
  // ai::XdpuRunner* runner = new ai::XdpuRunner("./");
  /*get in/out tensor*/
  auto inputTensors = runner->get_input_tensors();
  auto outputTensors = runner->get_output_tensors();

  /*get in/out tensor shape*/
  int inputCnt = inputTensors.size();
  int outputCnt = outputTensors.size();
  TensorShape inshapes[inputCnt];
  TensorShape outshapes[outputCnt];
  shapes.inTensorList = inshapes;
  shapes.outTensorList = outshapes;
  getTensorShape(runner.get(), &shapes, inputCnt, outputCnt);

  /*run with batch*/
  runResnet50(runner.get());
  return 0;
}

AI Library

当使用的模型在Vitis AI/Model ZOO中时,可以直接复用相应的模型demo,举个例子yolov3:

int main(int argc, char *argv[]) {
  if (argc < 2) {
    cerr << "usage: " << argv[0] << " image_file_url " << endl;
    abort();
  }
  Mat img = cv::imread(argv[2]);
  if (img.empty()) {
    cerr << "cannot load " << argv[2] << endl;
    abort();
  }

  auto yolo = vitis::ai::YOLOv3::create(argv[1], true);

  //  auto yolo =
  //    vitis::ai::YOLOv3::create(xilinx::ai::YOLOV3_VOC_416x416_TF, true);

  auto results = yolo->run(img);

  for (auto &box : results.bboxes) {
    int label = box.label;
    float xmin = box.x * img.cols + 1;
    float ymin = box.y * img.rows + 1;
    float xmax = xmin + box.width * img.cols;
    float ymax = ymin + box.height * img.rows;
    if (xmin < 0.) xmin = 1.;
    if (ymin < 0.) ymin = 1.;
    if (xmax > img.cols) xmax = img.cols;
    if (ymax > img.rows) ymax = img.rows;
    float confidence = box.score;

    cout << "RESULT: " << label << "\t" << xmin << "\t" << ymin << "\t" << xmax
         << "\t" << ymax << "\t" << confidence << "\n";
    rectangle(img, Point(xmin, ymin), Point(xmax, ymax), Scalar(0, 255, 0), 1,
              1, 0);
  }
  //    imshow("", img);
  //    waitKey(0);
  imwrite("result.jpg", img);

  return 0;
}

官方提供的模型列表直接参考:https://github.com/Xilinx/Vitis-AI/tree/master/models/AI-Model-Zoo

DPU Task

如果是使用DPU Task,那么可以直接参考yolov3这个例子:

//origin: Vitis-AI/demo/Vitis-AI-Library/samples/
dpu_task/yolov3/demo_yolov3.cpp

// The parameters of yolov3_voc, each value could be set as actual needs.
//也可以写在TXT中,防止硬编码
const string yolov3_config = {
    "   name: \"yolov3_voc_416\" \n"
    "   model_type : YOLOv3 \n"
    "   yolo_v3_param { \n"
    "     num_classes: 20 \n"
    "     anchorCnt: 3 \n"
    "     conf_threshold: 0.3 \n"
    "     nms_threshold: 0.45 \n"
    "     layer_name: \"81\" \n"
    "     layer_name: \"93\" \n"
    "     layer_name: \"105\" \n"
    "     biases: 10 \n"
    "     biases: 13 \n"
    "     biases: 16 \n"
    "     biases: 30 \n"
    "     biases: 33 \n"
    "     biases: 23 \n"
    "     biases: 30 \n"
    "     biases: 61 \n"
    "     biases: 62 \n"
    "     biases: 45 \n"
    "     biases: 59 \n"
    "     biases: 119 \n"
    "     biases: 116 \n"
    "     biases: 90 \n"
    "     biases: 156 \n"
    "     biases: 198 \n"
    "     biases: 373 \n"
    "     biases: 326 \n"
    "     test_mAP: false \n"
    "   } \n"};

int main(int argc, char* argv[]) {
  // argv[1]是xmodel的位置
  auto kernel_name = argv[1];

  // Read image from a path.
  vector<Mat> imgs;
  vector<string> imgs_names;
  for (int i = 2; i < argc; i++) {
    // image file names.
    auto img = cv::imread(argv[i]);
    if (img.empty()) {
      std::cout << "Cannot load " << argv[i] << std::endl;
      continue;
    }
    imgs.push_back(img);
    imgs_names.push_back(argv[i]);
  }
  if (imgs.empty()) {
    std::cerr << "No image load success!" << std::endl;
    abort();
  }
  // Create a dpu task object.
  auto task = vitis::ai::DpuTask::create(kernel_name);
  auto batch = task->get_input_batch(0, 0);
  // Set the mean values and scale values.
  task->setMeanScaleBGR({0.0f, 0.0f, 0.0f},
                        {0.00390625f, 0.00390625f, 0.00390625f});
  auto input_tensor = task->getInputTensor(0u);
  CHECK_EQ((int)input_tensor.size(), 1)
      << " the dpu model must have only one input";
  auto width = input_tensor[0].width;
  auto height = input_tensor[0].height;
  auto size = cv::Size(width, height);
  // Create a config and set the correlating data to control post-process.
  vitis::ai::proto::DpuModelParam config;
  // Fill all the parameters.
  auto ok =
      google::protobuf::TextFormat::ParseFromString(yolov3_config, &config);
  if (!ok) {
    cerr << "Set parameters failed!" << endl;
    abort();
  }

  vector<Mat> inputs;
  vector<int> input_cols, input_rows;
  for (long unsigned int i = 0, j = -1; i < imgs.size(); i++) {
    /* Pre-process Part */
    // Resize it if its size is not match.
    cv::Mat image;
    input_cols.push_back(imgs[i].cols);
    input_rows.push_back(imgs[i].rows);
    if (size != imgs[i].size()) {
      cv::resize(imgs[i], image, size);
    } else {
      image = imgs[i];
    }
    inputs.push_back(image);
    j++;
    if (j < batch - 1 && i < imgs.size() - 1) {
      continue;
    }

    // Set the input images into dpu.
    task->setImageRGB(inputs);

    /* DPU Runtime */
    // Run the dpu.
    task->run(0u);

    /* Post-process part */
    // Get output.
    auto output_tensor = task->getOutputTensor(0u);
    // Execute the yolov3 post-processing.
    auto results = vitis::ai::yolov3_post_process(
        input_tensor, output_tensor, config, input_cols, input_rows);

    /* Print the results */
    // Convert coordinate and draw boxes at origin image.
    for (int k = 0; k < static_cast<int>(inputs.size()); k++) {
      cout << "batch_index " << k << " "  //
           << "image_name " << imgs_names[i - j + k] << endl;
      for (auto& box : results[k].bboxes) {
        int label = box.label;
        float xmin = box.x * input_cols[k] + 1;
        float ymin = box.y * input_rows[k] + 1;
        float xmax = xmin + box.width * input_cols[k];
        float ymax = ymin + box.height * input_rows[k];
        if (xmin < 0.) xmin = 1.;
        if (ymin < 0.) ymin = 1.;
        if (xmax > input_cols[k]) xmax = input_cols[k];
        if (ymax > input_rows[k]) ymax = input_rows[k];
        float confidence = box.score;

        cout << "RESULT: " << label << "\t" << xmin << "\t" << ymin << "\t"
             << xmax << "\t" << ymax << "\t" << confidence << "\n";
        rectangle(imgs[i - j + k], Point(xmin, ymin), Point(xmax, ymax),
                  Scalar(0, 255, 0), 1, 1, 0);
      }
      imwrite(imgs_names[i - j + k] + "_result.jpg", imgs[i - j + k]);
    }
    inputs.clear();
    input_cols.clear();
    input_rows.clear();
    j = -1;
  }
  return 0;
}


Graph Runer

如果在编译xmodel时,模型被分割成了多个subgraph,那么上面的三种方式就无法运行了,因为上面三种只能运行一个subgraph。

如果真出现了多个subgraph,不妨先升级到vitis ai 1.4,1.3版本有bug。如果1.4版本依旧是多个subgraph,首先检查算子兼容性4、算子兼容性,通过 Vitis-AI/tools/Vitis-AI-Library/cpu_task/ops 可以查询支持的算子。

流程如下:

以车牌识别为例:

//origin:Vitis-AI/demo/Vitis-AI-Library/samples/graph_runner/
platenum_graph_runner/platenum_graph_runner.cpp

const std::vector<std::string> charactor_0 = {
   "unknown", "jing", "hu", "jin", "yu", "ji", "jin", "meng", "liao", "ji",
         "hei", "su", "zhe", "wan", "min", "gan",
         "lu", "yu", "e", "xiang", "yue", "gui", "qiong", "chuan", "gui", "yun",
         "zang", "shan", "gan", "qing", "ning", "xin"};

const std::vector<std::string> charactor_1 = {
   "unknown", "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L",
         "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"};

const std::vector<std::string> charactor_2 = {
   "unknown", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B",
         "C", "D", "E",
         "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U",
         "V", "W", "X", "Y", "Z"};

const std::vector<std::string> color = {"Blue", "Yellow"};

static int get_fix_point(const xir::Tensor* tensor);
static std::vector<std::int32_t> get_index_zeros(const xir::Tensor* tensor);
static std::vector<cv::Mat> read_images(const std::vector<std::string>& files,
                                        size_t batch);
static void set_input_image(const cv::Mat& image, void* data1, float scale);
static std::vector<std::pair<int, float>> topk(void* data1, size_t size,
                                               int K);
static size_t find_tensor_index(const char* tensor_name,
                             const std::vector<vart::TensorBuffer*>& outputs);
//platenum preprocess
static void preprocess_platenum(const std::vector<std::string>& files, 
                    const std::vector<vart::TensorBuffer*>& input_tensor_buffers) {
  auto input_tensor = input_tensor_buffers[0]->get_tensor();
  auto batch = input_tensor->get_shape().at(0);
  auto height = input_tensor->get_shape().at(1);
  auto width = input_tensor->get_shape().at(2);

  int fixpos = get_fix_point(input_tensor);
  float input_fixed_scale = std::exp2f(1.0f * (float)fixpos);

  auto size = cv::Size(width, height);
  auto images = read_images(files, batch);
  CHECK_EQ(images.size(), batch) 
    << "images number be read into input buffer must be equal to batch";

  for (int index = 0; index < batch; ++index) {
    cv::Mat resize_image;
    if (size != images[index].size()) {
      cv::resize(images[index], resize_image, size, 0);
    } else {
      images[index].copyTo(resize_image);
    }
    uint64_t data_in = 0u;
    size_t size_in = 0u;
    auto idx = get_index_zeros(input_tensor);
    idx[0] = (int)index;
    std::tie(data_in, size_in) = input_tensor_buffers[0]->data(idx);
    set_input_image(resize_image, (void*)data_in, input_fixed_scale);
  }
}

//platenum postprocess
static void postprocess_platenum(const std::vector<vart::TensorBuffer*>& output_tensor_buffers) {
  auto output_tensor = output_tensor_buffers[0]->get_tensor();
  auto batch = output_tensor->get_shape().at(0);
  auto size = output_tensor_buffers.size();
  CHECK_EQ(size, 8) << "output_tensor_buffers.size() must be 8";
  for (auto i = 1u; i < size; ++i) {
    CHECK_EQ(output_tensor_buffers[i]->get_tensor()->get_shape().at(0), batch) 
      << "all output_tensor_buffer batch number must be equal";
  }
  std::vector<std::pair<int, float>> ret;
  for (int batch_index = 0; batch_index < batch; ++batch_index) {
    for (auto tb_index = 0u; tb_index < size; ++tb_index) {
      uint64_t data_out = 0u;
      size_t size_out = 0u;
      auto idx = get_index_zeros(output_tensor_buffers[tb_index]->get_tensor());
      idx[0] = (int)batch_index;
      std::tie(data_out, size_out) = output_tensor_buffers[tb_index]->data(idx);
      auto elem_num = output_tensor_buffers[tb_index]->get_tensor()->get_element_num() / batch;
      auto tb_top1 = topk((void*)data_out, elem_num, 1)[0];
      ret.push_back(tb_top1);
    }
  }
  for (int batch_index = 0; batch_index < batch; ++batch_index) {
    std::string plate_number = "";
    std::string plate_color = "";
    //output_tensor_buffers maybe out of order, need find correct output_tensor_buffer result by tensor name
    plate_number += charactor_0[ret[batch_index * size + find_tensor_index("prob1", output_tensor_buffers)].first];
    plate_number += charactor_1[ret[batch_index * size + find_tensor_index("prob2", output_tensor_buffers)].first];
    plate_number += charactor_2[ret[batch_index * size + find_tensor_index("prob3", output_tensor_buffers)].first];
    plate_number += charactor_2[ret[batch_index * size + find_tensor_index("prob4", output_tensor_buffers)].first];
    plate_number += charactor_2[ret[batch_index * size + find_tensor_index("prob5", output_tensor_buffers)].first];
    plate_number += charactor_2[ret[batch_index * size + find_tensor_index("prob6", output_tensor_buffers)].first];
    plate_number += charactor_2[ret[batch_index * size + find_tensor_index("prob7", output_tensor_buffers)].first];
    plate_color = color[ret[batch_index * size + find_tensor_index("prob8", output_tensor_buffers)].first];
    std::cout << "batch_index: " << batch_index << std::endl;
    std::cout << "plate_color: " << plate_color << std::endl;
    std::cout << "plate_number: " << plate_number << std::endl;
  }
}

int main(int argc, char* argv[]) {
  if (argc < 3) {
    std::cerr << "usage :" << argv[0] << " <model_name>"
              << " <image_url> [<image_url> ...]" << std::endl;
    abort();
  }
  std::string g_xmodel_file = std::string(argv[1]);
  std::vector<std::string> g_image_files;
  for (auto i = 2; i < argc; i++) {
    g_image_files.push_back(std::string(argv[i]));
  }

  //create graph runner
  auto graph = xir::Graph::deserialize(g_xmodel_file);
  auto attrs = xir::Attrs::create();
  auto runner =
      vitis::ai::GraphRunner::create_graph_runner(graph.get(), attrs.get());
  CHECK(runner != nullptr);

  //get input/output tensor buffers
  auto input_tensor_buffers = runner->get_inputs();
  auto output_tensor_buffers = runner->get_outputs();

  //preprocess and fill input
  preprocess_platenum(g_image_files, input_tensor_buffers);

  //sync input tensor buffers
  for (auto& input : input_tensor_buffers) {
      input->sync_for_write(0, input->get_tensor()->get_data_size() /
                                   input->get_tensor()->get_shape()[0]);
    }

  //run graph runner
  auto v = runner->execute_async(input_tensor_buffers, output_tensor_buffers);
  auto status = runner->wait((int)v.first, -1);
  CHECK_EQ(status, 0) << "failed to run the graph";

  //sync output tensor buffers
  for (auto output : output_tensor_buffers) {
      output->sync_for_read(0, output->get_tensor()->get_data_size() /
                                   output->get_tensor()->get_shape()[0]);
    }

  //postprocess and print platenum result
  postprocess_platenum(output_tensor_buffers);

  return 0;
}

static int get_fix_point(const xir::Tensor* tensor) {
  CHECK(tensor->has_attr("fix_point"))
        << "get tensor fix_point error! has no fix_point attr, tensor name is "
        << tensor->get_name();
  return tensor->template get_attr<int>("fix_point");
}

static std::vector<std::int32_t> get_index_zeros(const xir::Tensor* tensor) {
  auto ret = tensor->get_shape();
  std::fill(ret.begin(), ret.end(), 0);
  return ret;
}

static std::vector<cv::Mat> read_images(const std::vector<std::string>& files,
                                            size_t batch) {
  std::vector<cv::Mat> images(batch);
  for (auto index = 0u; index < batch; ++index) {
    const auto& file = files[index % files.size()];
    images[index] = cv::imread(file);
    CHECK(!images[index].empty()) << "cannot read image from " << file;
  }
  return images;
}

static void set_input_image(const cv::Mat& image, void* data1, float scale) {
  float mean[3] = {128.0, 128.0, 128.0};
  signed char* data = (signed char*)data1;
  for (int h = 0; h < image.rows; h++) {
    for (int w = 0; w < image.cols; w++) {
      for (int c = 0; c < 3; c++) {
        auto image_data = (image.at<cv::Vec3b>(h, w)[c] - mean[c]) * scale;
        image_data = std::max(std::min(image_data, 127.0f), -128.0f);
        data[h * image.cols * 3 + w * 3 + c] = (int)image_data;
      }
    }
  }
}

static std::vector<std::pair<int, float>> topk(void* data1, size_t size,
                                                   int K) {
  const float* score = (const float*)data1;
  auto indices = std::vector<int>(size);
  std::iota(indices.begin(), indices.end(), 0);
  std::partial_sort(indices.begin(), indices.begin() + K, indices.end(),
                    [&score](int a, int b) { return score[a] > score[b]; });
  auto ret = std::vector<std::pair<int, float>>(K);
  std::transform(
      indices.begin(), indices.begin() + K, ret.begin(),
      [&score](int index) { return std::make_pair(index, score[index]); });
  return ret;
}

static size_t find_tensor_index(const char* tensor_name,
                         const std::vector<vart::TensorBuffer*>& outputs) {
  auto it = std::find_if(outputs.begin(), outputs.end(),
                         [&tensor_name](const vart::TensorBuffer* tb) {
                         return tb->get_tensor()->get_name() == tensor_name;
                        });
  CHECK(it != outputs.end()) << "cannot find tensorbuffer. tensor_name=" << tensor_name;
  return it - outputs.begin();
}

读取配置文件

以YOLOv3为例:

//origin:/usr/share/vitis_ai_library/models/yolov3/Yolov3.prototxt

model
{
name: "yolov3_voc"
kernel {
name: "yolov3_voc"
mean: 0.0
mean: 0.0
mean: 0.0
scale: 0.00390625
scale: 0.00390625
scale: 0.00390625
}
model_type : YOLOv3
yolo_v3_param {
num_classes: 20
anchorCnt: 3
layer_name: "59"
layer_name: "67"
layer_name: "75"
conf_threshold: 0.3
nms_threshold: 0.45
biases: 10
biases: 13
biases: 16
biases: 30
biases: 33
biases: 23
biases: 30
biases: 61
biases: 62
biases: 45
biases: 59
biases: 119
biases: 116
biases: 90
biases: 156
biases: 198
biases: 373
biases: 326
test_mAP: false
}
is_tf: false
}

其中,

pre-process

网络前处理主要包括通道均值、缩放、压缩比例:


post-processing

后处理有两种方式解决:一是直接使用官方提供的一些后处理API;二是自己编写后处理模块,并通过dpu_task进行调用。

官方提供的后处理API包括:

• Classification

• Face detection

• Face landmark detection

• SSD detection

• Pose detection

• Semantic segmentation


• Road line detection

• YOLOv3 detection

• YOLOv2 detection

• Openpose detection

• RefineDet detection

• ReID detection

• Multi-task

• Face recognition

• Plate detection

• Plate recognition

• Medical segmentation

• Medical detection

• Face quality

• Hourglass

• Retinaface

• Centerpoint

• Multitaskv3

• Pointpillars_nuscenes

• Rcan

直接参考Vitis-AI/tools/Vitis-AI-Library/xnnp中的相关代码。


如果使用dpu_task,当网络模型运行完毕时,会激活后处理函数:

参考资料

vitis-ai-pdf


相关文章
|
11天前
|
人工智能 安全 测试技术
探索AI在软件开发中的应用:提升开发效率与质量
【10月更文挑战第31天】在快速发展的科技时代,人工智能(AI)已成为软件开发领域的重要组成部分。本文探讨了AI在代码生成、缺陷预测、自动化测试、性能优化和CI/CD中的应用,以及这些应用如何提升开发效率和产品质量。同时,文章也讨论了数据隐私、模型可解释性和技术更新等挑战。
|
16天前
|
人工智能 小程序
【一步步开发AI运动小程序】五、帧图像人体识别
随着AI技术的发展,阿里体育等公司推出的AI运动APP,如“乐动力”和“天天跳绳”,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始开发一个AI运动小程序,使用“云智AI运动识别小程序插件”。文章分为四部分:初始化人体识别功能、调用人体识别功能、人体识别结果处理以及识别结果旋转矫正。下篇将继续介绍人体骨骼图绘制。
|
17天前
|
人工智能 小程序 vr&ar
AI运动小程序开发常见问题集锦二
截至当前,我们的AI运动识别小程序插件已迭代至第23个版本,广泛应用于健身、体育、体测、AR互动等场景。本文针对近期用户咨询,汇总了常见问题,帮助用户减少开发成本,提高效率。主要涵盖计时与计数模式的区别、综合排行榜生成方法、全屏模式适配及无开发能力用户的解决方案。
|
27天前
|
人工智能 编解码 小程序
【一步步开发AI运动小程序】四、小程序如何抽帧
随着AI技术的发展,阿里体育等公司推出的“乐动力”、“天天跳绳”等APP使云上运动会、线上健身等概念备受关注。本文将引导您从零开始开发一个AI运动小程序,利用“云智AI运动识别小程序插件”。文中详细介绍了微信小程序抽帧的相关API、设置及注意事项,帮助开发者更好地实现AI运动功能。下篇将介绍人体识别技术,敬请期待。
|
30天前
|
机器学习/深度学习 人工智能 监控
利用AI进行代码审查:提升代码质量和开发效率
【10月更文挑战第12天】本文探讨了AI在代码审查中的应用及其优势,介绍了AI辅助代码审查工具如何通过自动化和持续学习提升代码质量和开发效率。文章还提供了实施AI辅助代码审查的具体步骤和实战技巧,帮助团队更好地利用这些工具。
|
30天前
|
人工智能
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
|
30天前
|
存储 人工智能 NoSQL
使用 MongoDB 构建 AI:Gradient Accelerator Block 如何在几秒钟内让您从零开发 AI
借助 MongoDB,开发者可以存储任何结构的数据,然后使用单一查询 API 和驱动程序将这些数据用于 OLTP、文本搜索和向量搜索处理。
|
1月前
|
人工智能 前端开发 测试技术
探索前端与 AI 的结合:如何用 GPT-4 助力开发效率
本文介绍了 GPT-4 如何成为前端开发者的“神队友”,让开发变得更加高效愉快。无论是需求到代码的自动生成、快速调试和性能优化,还是自动化测试和技术选型,GPT-4 都能提供极大的帮助。通过智能生成代码、捕捉 BUG、优化性能、自动化测试生成以及技术支持,GPT-4 成为开发者不可或缺的工具,帮助他们从繁重的手动任务中解脱出来,专注于创新和创意。GPT-4 正在彻底改变开发流程,让开发者从“辛苦码农”转变为“效率王者”。
31 0
探索前端与 AI 的结合:如何用 GPT-4 助力开发效率
|
28天前
|
机器学习/深度学习 人工智能 小程序
【一步步开发AI运动小程序】三、运动识别处理流程
随着人工智能技术的发展,阿里体育等公司推出的“乐动力”、“天天跳绳”等AI运动APP备受关注。本文将引导您从零开始开发一个AI运动小程序,使用“云智AI运动识别小程序插件”。文章介绍了视频帧、帧率FPS、抽帧和人体识别等基本概念,并详细说明了处理流程,包括抽帧、人体识别检测、骨骼图绘制和运动分析等步骤。下篇将介绍如何在小程序中实现抽帧。
|
1月前
|
人工智能 Docker 容器
一、轻松部署的大模型开发平台dify.ai
一、轻松部署的大模型开发平台dify.ai
98 0

热门文章

最新文章