Python网络数据抓取(6):Scrapy 实战

简介: Python网络数据抓取(6):Scrapy 实战

引言

它是一个功能强大的Python框架,用于以非常灵活的方式从任何网站提取数据。它使用 Xpath 来搜索和提取数据。它很轻量级,对于初学者来说很容易理解。

现在,为了了解 Scrapy 的工作原理,我们将使用这个框架来抓取 Amazon 数据。我们将抓取亚马逊的图书部分,更具体地说,我们将抓取过去 30 天内发布的书籍。

实战

我们将从创建一个文件夹并安装 Scrapy 开始。

mkdir scraper

pip install scrapy

现在,在开始编码之前,我们必须创建一个项目。只需在终端中输入以下命令即可。

scrapy startproject amazonscraper

此命令将在 scraper 文件夹内创建一个名为 amazonscraper 的项目文件夹。

上面的命令还在终端上返回一些消息,告诉您如何开始编写自己的抓取工具。我们将使用这两个命令。
让我们先进入这个 amazonscraper 文件夹。

cd amazonscraper
scrapy genspider amazon_spider amazon.com

这将为我们创建一个通用的spider,这样我们就不必通过进入spider文件夹来创建我们自己的spider,这将自动为我们创建它。然后我们为spider命名,然后输入目标网站的域名。

当您按 Enter 键时,您的文件夹中将出现一个名为 amazon_spider.py 的文件。当您打开该文件时,您会发现已自动创建了一个解析函数和一个 Amazonspider 类。

import scrapy

class AmazonSpiderSpider(scrapy.Spider):
 name = ‘amazon_spider’
 allowed_domains = [‘amazon.com’]
 start_urls = [‘http://amazon.com/']

def parse(self, response):
 pass

我们将删除 allowed_domains 变量,因为我们不需要它,同时我们将声明 start_urls 到我们的目标 URL。

//amazon_spider.py

import scrapy

class AmazonSpiderSpider(scrapy.Spider):
 name = ‘amazon_spider’
 allowed_domains = [‘amazon.com’]
 start_urls = [‘https://www.amazon.com/s?k=books&i=stripbooks-intl-ship&__mk_es_US=%C3%85M%C3%85%C5%BD%C3%95%C3%91&crid=11NL2VKJ00J&sprefix=bo%2Cstripbooks-intl-ship%2C443&ref=nb_sb_noss_2']

def parse(self, response):
 pass

在开始使用抓取工具之前,我们需要在 items.py 文件中创建一些项目,它们是临时容器。我们将从亚马逊页面上抓取标题、价格、作者和图像链接。

由于我们需要来自亚马逊的四件商品,因此我们将添加四个变量来存储值。

//items.py

import scrapy

class AmazonscraperItem(scrapy.Item):
 # define the fields for your item here like:
 # name = scrapy.Field()
 product_name = scrapy.Field()
 product_author = scrapy.Field()
 product_price = scrapy.Field()
 product_imagelink = scrapy.Field()
 pass

现在,我们将该文件导入到 amazon_spider.py 文件中。

//amazon_spider.py

from ..items import AmazonscraperItem

只需在文件顶部键入它即可。现在,在我们的 parse 方法中,我们将声明一个变量,它将成为 AmazonscraperItem 类的实例。

def parse(self, response):
 items = AmazonscraperItem()
 pass

我们现在准备从亚马逊上抓取我们的目标元素。我们将从抓取产品名称开始。我们将声明一个变量product_name,它将等于产品名称元素的CSS 选择器。

def parse(self, response):
 items = AmazonscraperItem()
 product_name= response.css()
 pass

在这里,我将使用 SelectorGadget 扩展来获取目标页面上的元素位置。

在右下角你可以看到我们的 CSS 选择器。我将从这里复制它,然后将其粘贴到我们的代码中。

def parse(self, response):
 items = AmazonscraperItem()
 product_name= response.css(.a-size-medium’).extract()
 pass

我使用 .extract() 函数来获取所有这些产品元素的 HTML 部分。同样,我们将使用相同的技术来提取产品价格、作者和图像链接。在为作者查找 CSS 选择器时,SelectorGadget 会选择其中的一些,而会让许多作者未被选中。因此,您还必须选择这些作者。

def parse(self, response):
 items = AmazonscraperItem()
 product_name= response.css(.a-size-medium’).extract()

product_author = response.css(.a-color-secondary .a-row .a-size-base+ .a-size-base , .a-color-secondary .a-size-base.s-link-style , .a-color-secondary .a-size-base.s-link-style font’).extract()
 pass

现在,我们也找到价格的 CSS 选择器。

def parse(self, response):
 items = AmazonscraperItem()
 product_name= response.css(.a-size-medium’).extract()

product_author = response.css(.a-color-secondary .a-row .a-size-base+ .a-size-base , .a-color-secondary .a-size-base.s-link-style , .a-color-secondary .a-size-base.s-link-style font’).extract()

product_price = response.css(.s-price-instructions-style .a-price-fraction , .s-price-instructions-style .a-price-whole’).extract()

 pass

最后,现在我们将找到图像的 CSS 选择器。

.s-image 是我们图像的 CSS 选择器。

def parse(self, response):
 items = AmazonscraperItem()
 product_name= response.css(.a-size-medium’).extract()

product_author = response.css(.a-color-secondary .a-row .a-size-base+ .a-size-base , .a-color-secondary .a-size-base.s-link-style , .a-color-secondary .a-size-base.s-link-style font’).extract()

product_price = response.css(.s-price-instructions-style .a-price-fraction , .s-price-instructions-style .a-price-whole’).extract()

 product_imagelink = response.css(.s-image’).extract()

现在,正如我之前所说,这只会为我们提供 HTML 代码,我们需要从中提取名称。因此,为此,我们将使用 Scrapy 的文本功能。这将确保不会提取整个标签,并且仅提取该标签中的文本。

product_name= response.css(.a-size-medium::text’).extract()

但是因为我们为 CSS 选择器使用了多个类,所以我们无法在末尾添加此文本。我们必须对product_price 和product_author 使用.css() 函数。

product_author = response.css(.a-color-secondary .a-row .a-size-base+ .a-size-base , .a-color-secondary .a-size-base.s-link-style , .a-color-secondary .a-size-base.s-link-style font’).css(::text’).extract()

product_price = response.css(.s-price-instructions-style .a-price-fraction , .s-price-instructions-style .a-price-whole’).css(::text’).extract()

现在,product_imagelink 只是选择图像,因此我们不会在其上使用 .css() 函数。我们的图像存储在 src 标签内,我们需要它的值。

我们将使用Scrapy的attr功能。

product_imagelink = response.css(.s-image::attr(src)).extract()

我们已经成功提取了所有值。现在,我们将它们存储在各自的临时物品容器中,这就是我们的做法。

items[‘product_name’] = product_name

这个product_name实际上是我们在items.py文件中声明的变量。我们将对所有其他目标元素执行此操作。

items[‘product_name’] = product_name
 items[‘product_author’] = product_author
 items[‘product_price’] = product_price
 items[‘product_imagelink’] = product_imagelink

现在,我们只需要生成这些项目,这将完成我们的代码。我们的代码一开始可能不会,但让我们看看我们得到了什么。

yield items

现在,要运行我们的代码,请在终端上运行以下命令。

scrapy crawl amazon_spider

正如你所看到的,我们得到了一个空数组。这是由于亚马逊的反机器人机制所致。为了克服这个问题,我们将在 settings.py 文件中设置一个用户代理。

USER_AGENT = ‘Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:47.0) Gecko/20100101 Firefox/47.0

现在,让我们再试一次。

我们得到了结果。但和往常一样,这不会持续多久,因为亚马逊的反机器人技术将会启动,你的抓取工具将会停止。

Scrapy的功能还不止于此!

  • 您可以通过更改 CONCURRENT_REQUESTS 的值在 settings.py 文件中设置并行请求数。这将帮助您检查 API 可以处理多少负载。
  • 它比 Python 提供的大多数 HTTP 库都要快。
相关文章
|
4月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
533 7
|
4月前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
4月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
406 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
4月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
4月前
|
存储 分布式计算 测试技术
Python学习之旅:从基础到实战第三章
总体来说,第三章是Python学习路程中的一个重要里程碑,它不仅加深了对基础概念的理解,还引入了更多高级特性,为后续的深入学习和实际应用打下坚实的基础。通过这一章的学习,读者应该能够更好地理解Python编程的核心概念,并准备好应对更复杂的编程挑战。
159 12
|
4月前
|
存储 数据采集 监控
Python文件操作全攻略:从基础到高级实战
本文系统讲解Python文件操作核心技巧,涵盖基础读写、指针控制、异常处理及大文件分块处理等实战场景。结合日志分析、CSV清洗等案例,助你高效掌握文本与二进制文件处理,提升程序健壮性与开发效率。(238字)
445 1
|
4月前
|
存储 Java 调度
Python定时任务实战:APScheduler从入门到精通
APScheduler是Python强大的定时任务框架,通过触发器、执行器、任务存储和调度器四大组件,灵活实现各类周期性任务。支持内存、数据库、Redis等持久化存储,适用于Web集成、数据抓取、邮件发送等场景,解决传统sleep循环的诸多缺陷,助力构建稳定可靠的自动化系统。(238字)
816 1
|
4月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
437 0
|
4月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
485 0

热门文章

最新文章

推荐镜像

更多