机器学习实战 —— 工业蒸汽量预测(五)

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 机器学习实战 —— 工业蒸汽量预测(五)

文章描述

背景描述

  • 背景介绍

火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等。

  • 相关描述

经脱敏后的锅炉传感器采集的数据(采集频率是分钟级别),根据锅炉的工况,预测产生的蒸汽量。

  • 结果评估

预测结果以mean square error作为评判标准。

数据说明

数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。选手利用训练数据训练出模型,预测测试数据的目标变量,排名结果依据预测结果的MSE(mean square error)。

数据来源

http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_test.txt

http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_train.txt

实战内容

5.特征优化

5.1 定义特征构造方法,构造特征

#导入数据
import pandas as pd

train_data_file = "./zhengqi_train.txt"
test_data_file =  "./zhengqi_test.txt"

train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')

epsilon=1e-5

#组交叉特征,可以自行定义,如增加: x*x/y, log(x)/y 等等
func_dict = {
            'add': lambda x,y: x+y,
            'mins': lambda x,y: x-y,
            'div': lambda x,y: x/(y+epsilon),
            'multi': lambda x,y: x*y
            }

### 定义特征构造的函数
def auto_features_make(train_data,test_data,func_dict,col_list):
    train_data, test_data = train_data.copy(), test_data.copy()
    for col_i in col_list:
        for col_j in col_list:
            for func_name, func in func_dict.items():
                for data in [train_data,test_data]:
                    func_features = func(data[col_i],data[col_j])
                    col_func_features = '-'.join([col_i,func_name,col_j])
                    data[col_func_features] = func_features
    return train_data,test_data

### 对训练集和测试集数据进行特征构造
train_data2, test_data2 = auto_features_make(train_data,test_data,func_dict,col_list=test_data.columns)
from sklearn.decomposition import PCA
import pandas as pd

# 创建PCA对象并拟合训练数据(排除目标变量)
pca = PCA(n_components=38)  # 或者将 n_components 设置为 None 或 'mle'
train_data_pca = pca.fit_transform(train_data.iloc[:, :-1])

# 对测试数据进行PCA转换
test_data_pca = pca.transform(test_data)

# 将PCA转换后的数据转换为DataFrame
train_data_pca = pd.DataFrame(train_data_pca)
test_data_pca = pd.DataFrame(test_data_pca)

# 将目标变量添加回降维后的训练数据
train_data_pca['target'] = train_data['target']

# 提取特征和目标变量
X_train2 = train_data_pca.drop(columns=['target']).values
y_train = train_data_pca['target'].values

5.2 基于lightgbm对构造特征进行训练和评估

# 线下训练预测
for i, (train_index, test_index) in enumerate(kf.split(X_train2)):
    # lgb树模型
    lgb_reg = lgb.LGBMRegressor(
        learning_rate=0.01,
        max_depth=-1,
        n_estimators=100, #记得修改
        boosting_type='gbdt',
        random_state=2019,
        objective='regression',
    )
   
    # 切分训练集和预测集
    X_train_KFold, X_test_KFold = X_train2[train_index], X_train2[test_index]
    y_train_KFold, y_test_KFold = y_train[train_index], y_train[test_index]
    
    # 训练模型
    lgb_reg.fit(
            X=X_train_KFold,y=y_train_KFold,
            eval_set=[(X_train_KFold, y_train_KFold),(X_test_KFold, y_test_KFold)],
            eval_names=['Train','Test'],
            eval_metric='MSE'
        )


    # 训练集预测 测试集预测
    y_train_KFold_predict = lgb_reg.predict(X_train_KFold,num_iteration=lgb_reg.best_iteration_)
    y_test_KFold_predict = lgb_reg.predict(X_test_KFold,num_iteration=lgb_reg.best_iteration_) 
    
    print('第{}折 训练和预测 训练MSE 预测MSE'.format(i))
    train_mse = mean_squared_error(y_train_KFold_predict, y_train_KFold)
    print('------\n', '训练MSE\n', train_mse, '\n------')
    test_mse = mean_squared_error(y_test_KFold_predict, y_test_KFold)
    print('------\n', '预测MSE\n', test_mse, '\n------\n')
    
    MSE_DICT['train_mse'].append(train_mse)
    MSE_DICT['test_mse'].append(test_mse)
print('------\n', '训练MSE\n', MSE_DICT['train_mse'], '\n', np.mean(MSE_DICT['train_mse']), '\n------')
print('------\n', '预测MSE\n', MSE_DICT['test_mse'], '\n', np.mean(MSE_DICT['test_mse']), '\n------')


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
掌握机器学习:从基础到实战的全路径导览
在人工智能的浪潮中,机器学习如同一艘航船,引领我们探索数据的海洋。本文是一篇深入浅出的技术分享,旨在为初学者和进阶者提供一条清晰的学习路线图。我们将一起启航,从理论的灯塔到实践的港湾,逐步揭开机器学习的神秘面纱,让每一位旅者都能在这场智能革命中找到自己的位置。
|
6天前
|
机器学习/深度学习 人工智能 关系型数据库
【机器学习】Qwen2大模型原理、训练及推理部署实战
【机器学习】Qwen2大模型原理、训练及推理部署实战
17 0
【机器学习】Qwen2大模型原理、训练及推理部署实战
|
16天前
|
机器学习/深度学习 算法 Python
决策树下的智慧果实:Python机器学习实战,轻松摘取数据洞察的果实
【8月更文挑战第3天】在数据的海洋中探寻真知,决策树犹如智慧之树,以其直观易懂的强大功能,引领我们逐步缩小决策范围,轻松获取数据洞察。本篇将带您踏上Python机器学习之旅,从理解决策树为何受青睐开始,通过scikit-learn库实现鸢尾花数据集分类,解析其决策机制,并掌握调参技巧,最终优化模型性能,共同摘取数据科学的甜美果实。
26 1
|
24天前
|
机器学习/深度学习 算法 数据挖掘
从菜鸟到大师:Scikit-learn库实战教程,模型训练、评估、选择一网打尽!
【7月更文挑战第26天】在数据科学领域, Scikit-learn是初学者通往专家之路的必备工具。
32 5
|
22天前
|
机器学习/深度学习 算法 自动驾驶
探索机器学习:从基础到进阶的实战之旅
【7月更文挑战第28天】机器学习领域正迅速扩展,成为技术革新的驱动力之一。本文旨在通过深入浅出的方式介绍机器学习的核心概念、主要算法及其在现实世界中的应用案例,为初学者和有一定经验的开发者提供一条清晰的学习路径。我们将从理论基础出发,逐步深入到高级应用,最终探讨如何将机器学习模型部署到实际项目中,以实现智能化解决方案。
|
26天前
|
机器学习/深度学习 数据可视化 数据挖掘
从菜鸟到高手,一图胜千言!Python数据分析与机器学习中的数据可视化实战秘籍!
【7月更文挑战第24天】在数据科学中,数据可视化是探索与沟通的关键。从Matplotlib的基础绘图到Seaborn的统计图形,再到Plotly的交互式图表,这些工具助你成为数据叙事大师。示例代码涵盖正弦波图、小费散点图及鸢尾花分布图,展现从简单到复杂的可视化之旅。掌握这些技巧,你就能更有效地解析和呈现数据故事。
35 4
|
6天前
|
机器学习/深度学习 数据采集 物联网
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
21 0
|
6天前
|
机器学习/深度学习 编解码 API
【机器学习】FFmpeg+Whisper:二阶段法视频理解(video-to-text)大模型实战
【机器学习】FFmpeg+Whisper:二阶段法视频理解(video-to-text)大模型实战
17 0
|
6天前
|
机器学习/深度学习 人机交互 API
【机器学习】Whisper:开源语音转文本(speech-to-text)大模型实战
【机器学习】Whisper:开源语音转文本(speech-to-text)大模型实战
25 0
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战
21 0

热门文章

最新文章