【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?

简介: 【5月更文挑战第12天】【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?

曼哈顿距离与欧式距离在聚类算法中的区别

引言

在聚类算法中,距离度量是一个关键的概念,用于衡量数据点之间的相似性或距离。曼哈顿距离和欧式距离是两种常用的距离度量方法,在聚类算法中经常被使用。本文将对曼哈顿距离和欧式距离进行详细比较和分析,探讨它们的数学原理、几何意义、应用场景以及在聚类算法中的影响。

数学原理与计算方式

曼哈顿距离:
曼哈顿距离,也称为城市街区距离或L1范数,是指两点之间的距离是沿着坐标轴的方向移动,每次只能沿着一个方向移动一个单位距离,即各坐标的绝对距离总和。其数学表达式为:

[ D(x, y) = \sum_{i=1}^{n} |x_i - y_i| ]

其中 ( x ) 和 ( y ) 分别表示两个数据点的坐标,( n ) 表示数据的维度。

欧式距离:
欧式距离,也称为直线距离或L2范数,是指两点之间的距离是直线的长度,即两点在空间中的直线距离。其数学表达式为:

[ D(x, y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} ]

几何意义与可视化效果

曼哈顿距离:
曼哈顿距离可以被看作是沿着坐标轴的“城市街区”路径的长度,因此它在多维空间中表现为各个坐标之间的距离总和。在二维空间中,曼哈顿距离等于两点之间的水平和垂直距离之和,因此它通常呈现出沿着网格线的路径。这种路径的特性使得曼哈顿距离在处理具有网格结构或离散特征的数据时更为适用。

欧式距离:
欧式距离则代表了两点之间的最短直线距离,它在几何上对应于直线路径。在二维空间中,欧式距离等于两点之间的直线长度,因此它通常呈现出直线的路径。欧式距离在处理连续特征或具有连续性分布的数据时更为适用,因为它能够充分利用数据的连续性结构。

应用场景与选择考量

曼哈顿距离:
曼哈顿距离适用于处理具有离散特征或网格结构的数据,例如图像处理、城市规划、路径规划等领域。它对异常值的影响较小,因为它是沿着坐标轴的距离总和,不受距离的绝对值影响。

欧式距离:
欧式距离适用于处理连续特征或具有连续性分布的数据,例如传感器数据、生物医学数据、金融数据等领域。它对数据的特征尺度敏感,因此需要进行特征缩放或标准化以保证各个特征的权重相等。

在聚类算法中的影响

曼哈顿距离:
在K-means聚类算法中,使用曼哈顿距离可以得到更符合离散数据结构的聚类结果。曼哈顿距离对异常值的影响较小,因此在处理含有噪声或离群点的数据时更为稳健。

欧式距离:
在K-means聚类算法中,使用欧式距离可以得到更符合连续数据结构的聚类结果。欧式距离对数据的特征尺度敏感,因此需要对数据进行特征缩放以保证聚类结果的准确性。

结论

综上所述,曼哈顿距离和欧式距离在聚类算法中都有其独特的应用场景和适用性。工程师在选择距离度量方法时,需要根据数据的特征、结构和聚类需

求进行综合考量,以获得最佳的聚类结果。对于离散特征或具有网格结构的数据,可以考虑使用曼哈顿距离;而对于连续特征或具有连续性分布的数据,则更适合使用欧式距离。

相关文章
|
4月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
5月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
200 6
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
7月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
114 0
|
10月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
956 6
|
8月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
1330 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
8月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
203 14
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
9月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
232 2

热门文章

最新文章