基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真

简介: 该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。

1.算法运行效果图预览

image.png
image.png

2.算法运行软件版本
MATLAB2013B

3.算法理论概述
基于高斯混合模型(Gaussian Mixture Model, GMM)的视频背景提取和人员跟踪算法是一种广泛应用的计算机视觉方法,主要用于分离视频序列中的静态背景和动态前景(比如人物运动)。

   高斯混合模型是一个概率密度函数的线性组合,它可以近似表示复杂的背景分布情况。在视频背景建模中,每一帧图像的像素值被认为是来自K个不同高斯分布的随机变量。每个高斯分布代表一种潜在的背景状态。设第t帧图像的像素值为I_t(i,j),i和j分别是像素位置索引,那么I_t(i,j)的概率分布可以用K个高斯分布的加权和来表示:

image.png

   通过迭代优化,不断更新每个像素属于各高斯分量的概率以及高斯分量的参数,最终达到稳定状态,此时模型能够较好地表征背景信息。

    在模型训练完成后,对于新的视频帧,我们可以计算其像素值属于背景的概率。若某个像素点的概率低于设定阈值,则认为它是前景像素:

image.png

  背景提取后,可以利用连通组件分析、运动分析或其他目标跟踪算法对前景中的人员进行跟踪。例如,可以利用卡尔曼滤波器或粒子滤波器预测目标的位置,并与当前帧的实际检测结果进行匹配更新,实现连续跟踪。

   在实际应用中,为了适应环境光照变化、动态背景等问题,还需要对GMM模型进行在线更新。综上所述,基于高斯混合模型的视频背景提取和人员跟踪算法,首先是利用GMM建立背景模型,然后通过对新到来的视频帧进行背景减除,提取出前景目标,进而运用特定的跟踪算法对前景中的人员进行持续跟踪。

4.部分核心程序

disp('正在读取视频...');
FileName_AVI = 'Vedio\04.avi'; 
[pixel_gray,pixel_original,frameNum_Original] = func_vedio_process(FileName_AVI);

for i = 1:frameNum_Original
    i
    pixel_gray2(:,:,i)       = imresize(pixel_gray(:,:,i),[RR,CC]);
    pixel_original2(:,:,:,i) = imresize(pixel_original(:,:,:,i),[RR,CC]);
end
clear pixel_gray pixel_original;
disp('读取视频完毕...');


disp('正在进行高斯混合模型的仿真...');
[image_sequence,background_Update,Images0,Images2,res3] = func_Mix_Gauss_Model(pixel_original2,frameNum_Original,RR,CC,K,Alpha,Rho,Deviation_sq,Variance,Props,Back_Thresh,Comp_Thresh,SHADOWS);
disp('高斯混合模型的仿真完毕...');


disp('正在显示效果...');
figure;
for tt = 1:frameNum_Original
    tt
    subplot(221)
    imshow(image_sequence(:,:,:,tt));
    title('原始图像');
    subplot(222)
    imshow(uint8(background_Update(:,:,:,tt)));
    title('背景图像更新');
    subplot(223)
    imshow(Images0(:,:,tt));
    title('运动目标检测');
    subplot(224)
    imshow(res3(:,:,:,tt));
    title('运动目标检测-最后处理结果');
    pause(0.001);

end
disp('显示效果完毕...');


save Result.mat image_sequence background_Update Images0 Images2
相关文章
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
28 20
|
1天前
|
算法 人机交互 数据安全/隐私保护
基于图像形态学处理和凸包分析法的指尖检测matlab仿真
本项目基于Matlab2022a实现手势识别中的指尖检测算法。测试样本展示无水印运行效果,完整代码含中文注释及操作视频。算法通过图像形态学处理和凸包检测(如Graham扫描法)来确定指尖位置,但对背景复杂度敏感,需调整参数PARA1和PARA2以优化不同手型的检测精度。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PPO强化学习的buckboost升降压电路控制系统matlab仿真,对比PID控制器
本项目利用MATLAB 2022a对基于PPO强化学习的Buck-Boost电路控制系统进行仿真,完整代码无水印。通过与环境交互,智能体学习最优控制策略,实现输出电压稳定控制。训练过程包括初始化参数、收集经验数据、计算优势和奖励函数并更新参数。附带操作视频指导,方便用户理解和应用。
25 12
|
1天前
|
算法
基于爬山法MPPT最大功率跟踪算法的光伏发电系统simulink建模与仿真
本课题基于爬山法MPPT算法,对光伏发电系统进行Simulink建模与仿真。使用MATLAB2022a版本,通过调整光伏电池的工作状态以实现最大功率输出。爬山法通过逐步优化工作点,确保光伏系统在不同条件下均能接近最大功率点。仿真结果显示该方法的有效性,验证了模型的正确性和可行性。
|
1天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
242 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
145 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)