【Python】—— matplotlib数据可视化

简介: 【Python】—— matplotlib数据可视化

第1关:各省gdp的和生成条状图

任务描述

各省GDP的excel文件如图所示

编写一个程序,计算每年各省GDP信息的和,生成条状图显示

要求窗口大小10,10,图表标题为GDP条状图

相关知识

为了完成本关任务,你需要掌握:

  1. 数据汇总
  2. matplotlib库的使用
  3. 如何建立条状图
  4. 设置图表参数

Dataframe数据汇总

dataframe对象的Groupby可以根据一个或多个键对DataFrame计算分组摘要统计,count计数、sum求和、mean平均值、std标准差

例如,要将df对象数据按教师列汇总求学生的个数

df.groupby(["教师"])["学号"].count()

matplotlib库的使用

导入pyplot

import matplotlib.pyplot  as plt

在图表中显示中文

为了正确显示中文字体,请用以下代码更改默认设置,其中’SimHei’表示黑体字。

import matplotlib
matplotlib.rcParams['font.family']='SimHei'
matplotlib.rcParams['font.sans-serif'] = ['SimHei']

plt 库的显示函数

使用figure()函数创建一个全局绘图区域,并且使它成为当前的绘图对象,

figsize参数可以指定绘图区域的宽度和高度,单位为英寸。

例如

plt.figure(figsize=(8,4))
建立一个8英寸长4英寸宽的窗口

建立条形图

bar(x, height, alpha=1, width, color=, edgecolor=, label=, linewidth)

参数:

x:x轴的位置序列,一般采用arange函数产生一个序列;

height:y轴的数值序列,也就是柱形图的高度,一般就是我们需要展示的数据;

alpha:透明度

width:为柱形图的宽度

color:柱形图填充的颜色;

edgecolor:图形边缘颜色

label:解释每个图像代表的含义

linewidth :边缘线的宽度

import matplotlib
import matplotlib.pyplot as plt
x=["mary","mike","harry","tom","jerry","rose"]
y=[84.12,91.83,79.89,60.19,96.83,75.09]
#设置y轴的值
plt.bar(x,height=y,width=0.5, color='b')
#根据x和y绘制条形,条形宽度0.5,颜色蓝色
plt.show()

设置图表参数

plt.xlim(xmin,xmax)
设置当前x轴取值范围
plt.ylim(xmin,xmax)
设置当前y轴取值范围
plt.xlabel(s)
设置当前x轴的标签
plt.ylabel(s)
设置当前y轴的标签
plt.title()
设置标题

运行代码

import pandas
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
matplotlib.rcParams['font.family']='SimHei'
matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 其中'SimHei'表示黑体字。
data=pandas.read_excel("test/各省GDP.xlsx",dtype={"年份":str})
#代码开始
df = data.groupby(["年份"])["GDP"].sum()
fig = plt.figure(figsize = (10,10))
plt.bar(df.index,df)
plt.title("GDP条状图")
plt.show()
#代码结束
plt.savefig("image1/gdptxt.jpg")

第2关:各省银行数量绘制饼图

任务描述

银行分布excel文件如图所示

编写一个程序,将银行信息按省份对银行编号进行汇总

生成饼图显示各省银行的个数

要求绘图窗口为10,10

标题为银行省份分布图

饼图外侧显示省份的前2个字

相关知识

绘制饼图

pie(x, explode=None, labels=None,colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'),    autopct=None, shadow=False,labeldistance=1.1, radius=None)

参数: x (每一块)的比例,如果sum(x) > 1会使用sum(x)归一化

labels (每一块)饼图外侧显示的说明文字

explode (每一块)离开中心距离

startangle 起始绘制角度,默认图是从x轴正方向逆时针画起,如设定=90则从y轴正方向画起

shadow是否阴影

labeldistance label绘制位置,相对于半径的比例, 如<1则绘制在饼图内侧

autopct 控制饼图内百分比设置,可以使用format字符串指小数点前后位数

radius 控制饼图半径

运行代码

import pandas
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
matplotlib.rcParams['font.family']='SimHei'
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
data=pandas.read_excel("test/银行信息.xlsx")
#代码开始
fig = plt.figure(figsize = (10,10))
ans = data.groupby(["省份"])["银行编号"].count()
plt.pie(ans,labels=ans.index.str[:2])#饼图外侧显示省份的前2个字
plt.title("银行省份分布图")
#代码结束
plt.savefig("image2/yhbt.jpg")

第3关:各类银行数量绘制折线图

任务描述

银行分布excel文件如图所示

编写一个程序,将银行信息按银行种类对银行编号进行汇总

生成折线图显示银行数量最高的十个银行

按银行种类个数的降序排列

要求绘图窗口为10,10

标题为银行种类折线图

折线图的绘制

折线图就是将多个(x,y)点连接起来,生成一个折线图。

plot([x], y, [fmt], data=None,**kwargs)

函数用于绘制一条折线图,x若省略,则plot函数自动创建从0开始的 x坐标;fmt是字符串类型,用于描述颜色标志线型属性的值,格式为:[color][marker][line]

运行代码

import pandas
import matplotlib
matplotlib.use("Agg")
import numpy as np
import matplotlib.pyplot as plt
matplotlib.rcParams['font.family']='SimHei'
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
data=pandas.read_excel("test/银行信息.xlsx")
#代码开始
ans=data.groupby(["银行种类"])["银行编号"].count()
ans=ans.sort_values(ascending=False)
ans=ans.head(10)
plt.figure(figsize=(10,10))
plt.plot(ans.index,ans)
plt.title("银行种类折线图")
#代码结束
plt.savefig("image3/yhzxt.jpg")

第4关:各日超市销售金额绘制折

任务描述

本关任务:根据统计数据工作簿的日期统计数据,建立折线图

相关知识

为了完成本关任务,你需要掌握:1.如何使用matplotlib生成图表,2.如何设置图表的参数。3.datetime的使用

matplotlib库的使用

导入pyplot
import matplotlib.pyplot  as plt
在图表中显示中文
为了正确显示中文字体,请用以下代码更改默认设置,其中'SimHei'表示黑体字。
import matplotlib
matplotlib.rcParams['font.family']='SimHei'
matplotlib.rcParams['font.sans-serif'] = ['SimHei']

plt 库的显示函数

使用figure()函数创建一个全局绘图区域,并且使它成为当前的绘图对象,

figsize参数可以指定绘图区域的宽度和高度,单位为英寸。

例如

plt.figure(figsize=(8,4))
建立一个8英寸长4英寸宽的窗口

折线图的绘制

折线图就是将多个(x,y)点连接起来,生成一个折线图。

plot([x], y, [fmt], data=None,**kwargs)

函数用于绘制一条折线图,x若省略,则plot函数自动创建从0开始的 x坐标;fmt是字符串类型,用于描述颜色标志线型属性的值,格式为:'[color][marker][line]’

设置图表参数

设置标题、轴标签和刻度标签
plt.xlim(xmin,xmax)
设置当前x轴取值范围
plt.ylim(xmin,xmax)
设置当前y轴取值范围
plt.xlabel(s)
设置当前x轴的标签
plt.ylabel(s)
设置当前y轴的标签
plt.title()
设置标题
plt.xticks(pd.date_range(起始日期,结束日期))
设置x轴日期开始日期和结束日期
plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%Y-%m-%d'))
设置x轴日期格式

补充:pandas.date_range(start=None, end=None, periods=None, freq='D')

该函数主要用于生成一个固定频率的时间索引,在调用构造方法时,必须指定start、end、periods中的两个参数值,否则报错。

主要参数说明:

periods:固定时期,取值为整数或None

freq:日期偏移量,取值为string或DateOffset,默认为’D’

例:以下代码可以设置日期格式为年-月-日,设置x轴的取值范围为2021-1-1到2021-5-31日,在x轴垂直显示2021-1-1

到2021-5-31,

plt.gca().xaxis.set_major_formatter(datetime.date.DateFormatter('%Y-%m-%d'))
plt.xlim(datetime.date(2021,1,1),datetime.date(2021,5,31))
plt.xticks(pd.date_range('2021-1-1','2021-5-31'),rotation=90)

编程要求

根据提示,在右侧编辑器补充代码,根据统计数据工作簿的日期统计数据,建立折线图。

测试说明

平台会对你编写的代码进行测试:

产生的折线图如任务描述所示,x轴为日期,y轴为合计金额

图表窗口宽10高14

图表标题为日期销售

要求x轴设置标签为日期,范围为2000-5-20至2000-7-18,并显示日期

y轴设置标签为金额,范围为0到1800

提示:在绘制图形时日期标签需要垂直排列 设置rotation=90

运行代码

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
import datetime
df=pd.read_excel("tbsc/step1/统计数据.xlsx",sheet_name="日期统计")#从excel文件读入数据
#代码开始
matplotlib.rcParams['font.family']='SimHei'#在图表中显示中文,其中'SimHei'表示黑体字。
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
plt.figure(figsize=(10,14))#建立一个10英寸长14英寸宽的窗口
plt.title("日期销售")#设置标题
plt.xlabel("日期")#设置当前x轴的标签
plt.ylabel("金额")#设置当前y轴的标签
plt.ylim(0,1800)#设置当前y轴取值范围
plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%Y-%m-%d'))#设置x轴日期格式
plt.xlim(datetime.date(2000,5,20),datetime.date(2000,7,18))#设置当前x轴取值范围
plt.xticks(pd.date_range('2000-5-20','2000-7-18'),rotation=90)#设置x轴日期开始日期和结束日期
plt.plot(df["日期"].dt.date,df["合计金额"])
#代码结束
plt.savefig("image4/rqzxt.jpg")

第5关:四种类别的销售数量合计

任务描述

本关任务:根据excel文件“类别销售”工作簿(tbsc/step2/类别销售.xlsx)的烟、零食、饮料、酒工作表的数据,找出销售数量合计最高的三种商品,建立条状图

相关知识

为了完成本关任务,你需要掌握:1.如何建立条状图,2.如何绘制子图。

建立条形图

bar(x, height, alpha=1, width, color=, edgecolor=, label=, linewidth)

参数:

x:x轴的位置序列,一般采用arange函数产生一个序列;

height:y轴的数值序列,也就是柱形图的高度,一般就是我们需要展示的数据;

alpha:透明度

width:为柱形图的宽度

color:柱形图填充的颜色;

edgecolor:图形边缘颜色

label:解释每个图像代表的含义

linewidth :边缘线的宽度

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
y=[84.12,81.83,79.89,78.19,76.83,75.09,74.58,73.71]
#设置y轴的值
sj=np.linspace(1,8,8)
#设置x轴的位置
plt.bar(x=sj, height=y,width=0.5, color='b')
#根据x和y绘制条形,条形宽度0.5,颜色蓝色
plt.show()

绘制子图

subplot(numRows, numCols, plotNum)

参数: 图表的整个绘图区域被分成 numRows 行和 numCols 列

然后按照从左到右,从上到下的顺序对每个子区域进行编号,左上的子区域的编号为1

plotNum 参数指定创建的 Axes 对象所在的区域

plt.subplot(2,2,1)

图表的整个绘图区域被分成2行和2列

选择左上区域作为当前的绘图区域

编程要求

根据提示,在右侧编辑器补充代码,按要求输出图形。

图形的宽度为10,高度为14

四个子图分别为烟,饮料,零食,酒四个类别的三种销量最高的商品的销售量

柱形的横轴坐标分别为0,0.5,1,每个柱形的宽度为0.2,图例为商品名称。

在每个柱形上标识使出数量的文字(高度比柱形高1)

每个子图的标题为商品类别,x轴分别标识1,2,3

每个子图需要显示图例

运行代码

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
#代码开始
matplotlib.rcParams['font.family']='SimHei'#在图表中显示中文,其中'SimHei'表示黑体字
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
plt.figure(figsize=(10,14))#建立一个10英寸长14英寸宽的窗口
lb=["烟","饮料","零食","酒"]
j=1
for x in lb:
    df=pd.read_excel("tbsc/step2/类别销售.xlsx",sheet_name=x)#从excel文件读入数据
    ans=df.groupby("商品名称")["数量"].sum()
    ans.sort_values(ascending=False,inplace=True)
    ans.index=ans.index.str.replace("\t","")
    sp=ans[:3]
    plt.subplot(2,2,j)#图表的整个绘图区域被分成2行和2列
    for i in range(0,3):
        plt.bar(x=i*0.5, height=ans[i],width=0.2,label=ans.index[i])#建立条状图
        plt.text(i*0.5,ans[i]+1,ans[i])
    j=j+1
    plt.xticks([0,0.5,1],[1,2,3])#设置x轴开始和结束范围
    plt.title(x)#设置标题
    plt.legend()
#代码结束
plt.savefig("image5/lbzxt.jpg")

第6关:销售各类别数据绘制饼图

任务描述

本关任务:根据统计数据工作簿的类别统计数据,建立饼图。

将合计金额小于合计金额的平均值1/5的数据,统计到其他类别。

相关知识

为了完成本关任务,你需要掌握:如何建立饼图

绘制饼图

pie(x, explode=None, labels=None,colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'),    autopct=None, shadow=False,labeldistance=1.1, radius=None)

参数:x (每一块)的比例,如果sum(x) > 1会使用sum(x)归一化

labels (每一块)饼图外侧显示的说明文字

explode (每一块)离开中心距离

startangle起始绘制角度,默认图是从x轴正方向逆时针画起,如设定=90则从y轴正方向画起

shadow 是否阴影

labeldistance label绘制位置,相对于半径的比例, 如<1则绘制在饼图内侧

autopct 控制饼图内百分比设置,可以使用format字符串指小数点前后位数

radius 控制饼图半径

编程要求

根据提示,在右侧编辑器补充代码,生成如图所示饼图

饼图宽10高10

图表标签为合计金额大于等于合计金额的平均值1/5的类别,加上其他类别

饼图内按保留两位小数的形式显示百分比

图表标题为各类别销售分布

运行代码

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
df=pd.read_excel("tbsc/step3/统计数据.xlsx",sheet_name="类别统计")
matplotlib.rcParams['font.family']='SimHei'
matplotlib.rcParams['font.sans-serif'] = ['SimHei']
#代码开始
plt.figure(figsize=(10,10))#建立一个10英寸长10英寸宽的窗口
ds = df["合计金额"].mean()/5#图表标签为合计金额大于等于合计金额的平均值1/5的类别
df1 = df.loc[df["合计金额"]>=ds] 
qthj=df.loc[df["合计金额"]<ds]["合计金额"].sum()
df1=df1.append({"类别":"其他","合计金额":qthj},ignore_index=True)
plt.pie(df1["合计金额"],labels=df1["类别"],autopct="%0.2f%%")#绘制饼图      饼图内按保留两位小数的形式显示百分比
plt.title('各类别销售分布')
#代码结束
plt.savefig("image6/lbbt.jpg")


目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 搜索推荐
基于python的汽车数据可视化、推荐及预测系统
本研究围绕汽车数据可视化、推荐及预测系统展开,结合大数据与人工智能技术,旨在提升用户体验与市场竞争力。内容涵盖研究背景、意义、相关技术如 Python、ECharts、协同过滤及随机森林回归等,探讨如何挖掘汽车数据价值,实现个性化推荐与智能预测,为汽车行业智能化发展提供支持。
|
22天前
|
数据采集 Web App开发 自然语言处理
新闻热点一目了然:Python爬虫数据可视化
新闻热点一目了然:Python爬虫数据可视化
|
1月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
1月前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
1月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
2月前
|
搜索推荐 算法 数据可视化
基于python大数据的招聘数据可视化及推荐系统
本研究聚焦于基于协同过滤的就业推荐系统设计与实现。随着就业压力增大和信息技术发展,传统求职方式面临挑战。通过分析用户行为与职位特征,协同过滤技术可实现个性化职位推荐,提升求职与招聘效率。研究涵盖系统架构、数据采集、算法实现及可视化展示,旨在优化就业匹配,促进人才与岗位精准对接,助力就业市场智能化发展。
|
4月前
|
数据可视化 算法 数据挖掘
Python 3D数据可视化:7个实用案例助你快速上手
本文介绍了基于 Python Matplotlib 库的七种三维数据可视化技术,涵盖线性绘图、散点图、曲面图、线框图、等高线图、三角剖分及莫比乌斯带建模。通过具体代码示例和输出结果,展示了如何配置三维投影环境并实现复杂数据的空间表示。这些方法广泛应用于科学计算、数据分析与工程领域,帮助揭示多维数据中的空间关系与规律,为深入分析提供技术支持。
140 0
Python 3D数据可视化:7个实用案例助你快速上手
|
5月前
|
人工智能 数据可视化 数据挖掘
如何使用Python进行数据可视化
Python是一种强大的编程语言,广泛应用于数据分析与可视化。常见的可视化库有Matplotlib、Seaborn和Plotly等。数据可视化通常包括以下步骤:准备数据(如列表或从文件读取)、选择合适的工具、绘制图表、优化样式(如标题和标签)以及保存或分享结果。例如,使用Matplotlib可通过简单代码绘制线图并添加标题和轴标签。实际应用中,可通过调整颜色、样式等进一步优化图表,甚至使用交互式工具提升效果。总之,Python的丰富工具为数据可视化提供了强大支持。
191 5
|
10月前
|
数据可视化 数据挖掘 开发者
Pandas数据可视化:matplotlib集成(df)
Pandas 是 Python 中强大的数据分析库,Matplotlib 是常用的绘图工具。两者结合可方便地进行数据可视化,帮助理解数据特征和趋势。本文从基础介绍如何在 Pandas 中集成 Matplotlib 绘制图表,如折线图、柱状图等,并深入探讨常见问题及解决方案,包括图表显示不完整、乱码、比例不合适、多子图布局混乱、动态更新图表等问题,提供实用技巧和代码示例。掌握这些方法后,你将能更高效地处理数据可视化任务。
328 9
|
10月前
|
数据可视化 数据挖掘 DataX
Python 数据可视化的完整指南
Python 数据可视化在数据分析和科学研究中至关重要,它能帮助我们理解数据、发现规律并以直观方式呈现复杂信息。Python 提供了丰富的可视化库,如 Matplotlib、Seaborn、Plotly 和 Pandas 的绘图功能,使得图表生成简单高效。本文通过具体代码示例和案例,介绍了折线图、柱状图、饼图、散点图、箱形图、热力图和小提琴图等常用图表类型,并讲解了自定义样式和高级技巧,帮助读者更好地掌握 Python 数据可视化工具的应用。
595 3

推荐镜像

更多