【计算机网络】—— IP协议及动态路由算法(下)

简介: 【计算机网络】—— IP协议及动态路由算法(下)

【计算机网络】—— IP协议及动态路由算法(上)https://developer.aliyun.com/article/1507505?spm=a2c6h.13148508.setting.49.1b484f0eD2AqhJ

3、IP编址计算

3.1子网划分

      将172.16.64.0/26划分为4个等长子网。

      运行结果:

      代码:

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int b[40],index,ip[4];
void binary(int d) {
  int temp[8]= {0},i=0;
  int x=0;
  while(d>0) {
    int n=d%2;
    d=d/2;
    temp[i++]=n;
    x++;
  }
  while(x<8) {
    temp[i++]=0;
    x++;
  }
  for(int i=7; i>=0; i--) {
    b[index++]=temp[i];
  }
  return;
}
int bin_dec(int x,int n) {
  if(n==0) {
    return 1;
  }
  return x*bin_dec(x,n-1);
}
void print(int pos,int num) {
  int count=0;
  if(pos==num) {
    for(int i=0; i<32; i++) {
      printf("%d ",b[i]);
      count++;
      if(count%8==0)printf(" ");
    }
    for(int i=0; i<8; i++) {
      if(b[i]==1) {
        ip[0]+=bin_dec(2,7-i);
      }
    }
    for(int i=8; i<16; i++) {
      if(b[i]==1) {
        ip[1]+=bin_dec(2,15-i);
      }
    }
    for(int i=16; i<24; i++) {
      if(b[i]==1) {
        ip[2]+=bin_dec(2,23-i);
      }
    }
    for(int i=24; i<32; i++) {
      if(b[i]==1) {
        ip[3]+=bin_dec(2,31-i);
      }
    }
    printf("对应十进制IP:%d.%d.%d.%d",ip[0],ip[1],ip[2],ip[3]);
    printf("/%d\n",num);
    memset(ip,0,sizeof(ip));
    return;
  }
  b[pos]=1;
  print(pos+1,num);
  b[pos]=0;
  print(pos+1,num);
}
int main() {
  int d1=0,d2=0,d3=0,d4=0,prefix,bp[40]= {0},ips,ip_num=0;
  printf("请输入IP:");
  scanf("%d.%d.%d.%d",&d1,&d2,&d3,&d4);
  printf("请输入前缀:");
  scanf("%d",&prefix);
  printf("请输入划分子网的个数:");
  scanf("%d",&ips);
  if(ips%2==0) {
    while(ips>1) {
      ips/=2;
      ip_num++;
    }
  } else {
    while(ips>0) {
      ips/=2;
      ip_num++;
    }
  }
  for(int i=0; i<prefix; i++) {
    bp[i]=1;
  }
  binary(d1);
  binary(d2);
  binary(d3);
  binary(d4);
  printf("计算过程:\n");
  printf(" IP地址 :");
  int count=0;
  for(int i=0; i<index; i++) {
    printf("%d ",b[i]);
    count++;
    if(count%8==0)printf(" ");
  }
  printf("\n");
  printf("网络掩码:");
  for(int i=0; i<32; i++) {
    printf("%d ",bp[i]);
    count++;
    if(count%8==0)printf(" ");
  }
  for(int i=0; i<32; i++) {
    b[i]=b[i]&bp[i];
  }
  printf("\n");
  printf("网络地址:");
  for(int i=0; i<32; i++) {
    printf("%d ",b[i]);
    count++;
    if(count%8==0)printf(" ");
  }
  printf("\n\n");
  printf("划分为2的%d次方个等长网络\n",ip_num);
  print(prefix,prefix+ip_num);
  return 0;
}

3.2确定网络号(子网地址)

      试确定172.115.116.117/21的子网地址。

      因为/21,所以得出子网掩码为:255.255.248.0,通过与运算得出结果如图:

      代码截图以及运行结果:

3.3路由总结

确定172.112.0.0/22、172.116.0.0/22、172.120.0.0/22这三个子网的路由总结。

方法一(C语言)运行结果:

代码:

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int n;
typedef struct ip_s {
  int d[4];
  int ip[4],b[32];
} ip_s;
ip_s ips[10];
ip_s binary(ip_s ip) {
  int temp[8]= {0},index=0,q=0;
  int x=0;
  for(int i=0; i<4; i++) {
    x=0;
    q=0;
    while(ip.d[i]>0) {
      int n=ip.d[i]%2;
      ip.d[i]=ip.d[i]/2;
      temp[q]=n;
      q++;
      x++;
    }
    while(x<8) {
      temp[q]=0;
      q++;
      x++;
    }
    for(q=7; q>=0; q--) {
      ip.b[index]=temp[q];
      index++;
    }
  }
  return ip;
}
int bin_dec(int x,int n) {
  if(n==0) {
    return 1;
  }
  return x*bin_dec(x,n-1);
}
void print(int *ans) {
  int ip[32];
  memset(ip,0,sizeof(ip));
  for(int i=0; i<8; i++) {
    if(ans[i]==1) {
      ip[0]+=bin_dec(2,7-i);
    }
  }
  for(int i=8; i<16; i++) {
    if(ans[i]==1) {
      ip[1]+=bin_dec(2,15-i);
    }
  }
  for(int i=16; i<24; i++) {
    if(ans[i]==1) {
      ip[2]+=bin_dec(2,23-i);
    }
  }
  for(int i=24; i<32; i++) {
    if(ans[i]==1) {
      ip[3]+=bin_dec(2,31-i);
    }
  }
  printf("对应十进制IP:%d.%d.%d.%d",ip[0],ip[1],ip[2],ip[3]);
  return;
}
int main() {
  int prefix,ans[32],count=0;
  printf("请输入子网数量:");
  scanf("%d",&n);
  printf("输入子网:\n");
  for(int i=0; i<n; i++) {
    scanf("%d.%d.%d.%d",&ips[i].d[0],&ips[i].d[1],&ips[i].d[2],&ips[i].d[3]);
    ips[i]=binary(ips[i]);
  }
  for(int i=0; i<32; i++) {
    ans[i]=i;
  }
  for(int i=0; i<n; i++) {
    for(int j=0; j<32; j++) {
      ans[j]=ans[j]&ips[i].b[j];
    }
  }
  for(int i=0; i<32; i++) {
    printf("%d ",ans[i]);
    count++;
    if(count%8==0)printf(" ");
    if(ans[i]!=0) {
      prefix=i;
    }
  }
  print(ans);
  printf("/%d",prefix+1);
  return 0;
}

方法二(python语言)运行结果:

代码截图:

      汇总后的地址空间为10101100 01110000 00000000 00000000,计算得到最后的路由总结为172.112.0.0/12。和方法一算出来的一样。

4、DHCP协议分析

4.1分析

      要抓取到DHCP包,先要保证有可用的DHCP服务器,然后将主机IP地址获取方式设置为自动获取。我的主机在抓包之前已经联网,需要先断开主机的网络连接,然后再连接网络。在cmd下使用命令ipconfig来完成网络断开与连接的过程:

      ipconfig /release :断开当前的网络连接,主机IP变为0.0.0.0,主机与网络断开,不能访问网络。

断开当前的网络连接

      ipconfig /renew :更新适配器信息,请求连接网络,这条命令结束之后,主机会获得一个可用的IP,再次接入网络。

请求连接网络

4.2 DHCP协议抓包分析

      捕捉到的报文通过bootp过滤,结果如下:

DHCP协议抓包截图

4.2.1 DHCP Discover包

      Client端使用IP地址0.0.0.0发送了一个广播包,可以看到此时的目的IP为255.255.255.255。Client想通过这个数据包发现可以给它提供服务的DHCP服务器。从下图可以看出,DHCP属于应用层协议,它在传输层使用UDP协议,目的端口是67。

DHCP Discover包

4.2.2 DHCP Offer包

      当DHCP服务器收到一条DHCP Discover数据包时,用一个DHCP Offerr包给予客户端响应。

DHCP Offer包

4.2.3 DHCP Request包

      当Client收到了DHCP Offer包以后(如果有多个可用的DHCP服务器,那么可能会收到多个DHCP Offer包),确认有可以和它交互的DHCP服务器存在,于是Client发送Request数据包,请求分配IP。此时的源IP和目的IP依然是0.0.0.0和255.255.255.255。

DHCP Request包

4.2.4 DHCP ACK包

      服务器用DHCP ACK包对DHCP请求进行响应。

DHCP ACK包

5、DV路由算法编程与测试;

路由路径拓扑图:

路由器数量及边数:7 7

边的开销:

1 2 8

2 3 8

3 7 8

1 4 6

4 5 6

5 6 6

6 7 6

代码截图:

#include<iostream>
#include<algorithm>
#define MAX 0x3f
#define N 999
using namespace std;
int nodenum,edgenum,original,destination;
typedef struct Edge {
  int u,v;
  int cost;
} Edge;
Edge edge[N];
int dis[N],pre[N];
void Bellman_Ford() {
  for (int i=1; i<=nodenum; i++) {
    dis[i]=(i==original?0:MAX);
  }
  for (int i=1; i<=nodenum-1; i++) {
    for(int j=1; j<=edgenum; j++) {
      if(dis[edge[j].v]>dis[edge[j].u]+edge[j].cost) {
        dis[edge[j].v]=dis[edge[j].u]+edge[j].cost;
        pre[edge[j].v]=edge[j].u;
      }
    }
  }
}
void path_out(int p) {
  if(pre[p]!=p) {
    path_out(pre[p]);
    printf("-->",p);
  }
  printf("R%d",p);
}
int main() {
  printf("请输入路由器的数量以及边数:");
  scanf("%d %d",&nodenum,&edgenum);
  printf("请输入边的开销:\n") ;
  for(int i=1; i<=edgenum; i++)
    scanf("%d %d %d",&edge[i].u,&edge[i].v,&edge[i].cost);
  printf("请输入源路由器以及目的路由器的编号:");
  scanf("%d %d",&original,&destination);
  pre[original]=original;
  Bellman_Ford();
  printf("DC的路径为:");
  path_out(destination);
  return 0;
}

DV路由算法

运行结果:

运行截图

6、LS路由算法编程与测试

路由路径拓扑图:

路由数及边数:7 8

边的开销:

1 2 8

2 3 8

3 7 8

1 4 6

4 5 6

5 6 6

6 7 6

5 3 2

代码截图:

#include<iostream>
#include<algorithm>
#include<string.h>
#define N 999
using namespace std;
int map[N][N],dist[N],book[N],path[N],n,m,original,destination;
void dijkstra() {
  memset(dist,127,sizeof(dist));
  dist[1]=0;
  memset(path,0,sizeof(path));
  for(int i=1; i<=n; i++) {
    int x=0;
    for(int j=1; j<=n; j++) {
      if(!book[j] && ( x==0 || dist[j] < dist[x])) {
        x=j;
      }
    }
    book[x]=1;
    for(int j=1; j<=n; j++) {
      if(dist[j]>dist[x]+map[x][j]) {
        dist[j]=dist[x]+map[x][j];
        path[j]=x;
      }
    }
  }
}
void path_out(int p) {
  if(path[p]!=0) {
    path_out(path[p]);
    printf("-->",p);
  }
  printf("R%d",p);
}
int main() {
  printf("请输入路由器的数量以及边数:");
  scanf("%d %d",&n,&m);
  memset(map,127,sizeof(map));
  printf("请输入边的开销:\n");
  int a,b,z;
  for(int i=0; i<m; i++) {
    scanf("%d %d %d",&a,&b,&z);
    map[a][b]=min(map[a][b],z);
  }
  dijkstra();
  printf("请输入源路由器以及目的路由器的编号:");
  scanf("%d %d",&original,&destination);
  printf("开销为:%d\n",dist[destination]);
  printf("LS的路径为:");
  path_out(destination);
  return 0;
}

LS路由算法

运行结果:

运行截图

思考

1、如下图所示的Ping,返回的TTL是变化的,请问该网络为数据报(datagram)网络与虚电路(virtual-circuit)网络的那种可能性较大?TTL变化说明了什么?

      根据图像所显示的信息,该网络为数据报(datagram)网络的可能性较大。因为在数据报网络中,TTL值的变化是正常的,而虚电路(virtual-circuit)网络中TTL值是不会变化的。

2、路由器根据分组的目的地址转发分组,基于路由协议/算法构建转发表,转发时检索转发表,每个分组独立选路,那么在支持等价路由的LS算法协议中(比如说OSPF),数据被分为很多个分组,很多个分组必然选择不同的路径到达目的地,但是Cost开销一致,并不代表时延一致,传输层在根据序号组包时,较大的时延会不会对TCP流量产生影响?影响的后果是什么?

      等价路由是指在网络中使用多个路由路径将数据从源地址传输到目标地址,这些路径具有相同的成本和度量,并且可以同时用于传输数据。在支持等价路由的LS算法协议中,比如OSPF,数据被分为很多个分组,每个分组独立选路,因此可能会选择不同的路径到达目的地。虽然这些路径的成本开销一致,但并不代表时延一致。

      当传输层根据序号组包时,较大的时延可能会对TCP流量产生影响。这是因为TCP协议是基于字节流的,它的数据传输是连续的,如果中间出现了较大的时延,可能会导致后续的数据包延迟发送,从而影响到数据的连续性和完整性。这种情况可能会导致接收方收到的数据出现丢包、重复包或者顺序错乱等问题,从而影响到TCP流量的正常传输。

      具体的影响后果可能包括:重传机制触发,导致网络拥塞加剧;应用程序因为数据丢失或错误而出错;用户体验下降,例如视频卡顿、语音断续等。为了避免这些问题,网络设计者和管理员需要密切关注网络性能,确保数据能够沿着最优路径传输,同时采取措施减少时延和提高可靠性。


目录
相关文章
|
17天前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
52 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
10天前
|
机器学习/深度学习 算法 文件存储
【博士每天一篇文献-算法】 PNN网络启发的神经网络结构搜索算法Progressive neural architecture search
本文提出了一种名为渐进式神经架构搜索(Progressive Neural Architecture Search, PNAS)的方法,它使用顺序模型优化策略和替代模型来逐步搜索并优化卷积神经网络结构,从而提高了搜索效率并减少了训练成本。
20 9
|
6天前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
11天前
|
数据采集 算法 数据可视化
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
本文设计并实现了一个基于Python网络爬虫和机器学习模型的今日头条新闻数据分析与热度预测系统,通过数据采集、特征工程、模型构建和可视化展示,挖掘用户行为信息和内容特征,预测新闻热度,为内容推荐和舆情监控提供决策支持。
【优秀python算法设计】基于Python网络爬虫的今日头条新闻数据分析与热度预测模型构建的设计与实现
|
16天前
|
负载均衡 算法 网络协议
动态路由的主流算法
【8月更文挑战第3天】BGP 协议使用的算法是路径矢量路由协议(path-vector protocol)。它是距离矢量路由协议的升级版。
|
19天前
|
缓存 负载均衡 算法
(四)网络编程之请求分发篇:负载均衡静态调度算法、平滑轮询加权、一致性哈希、最小活跃数算法实践!
先如今所有的技术栈中,只要一谈关于高可用、高并发处理相关的实现,必然会牵扯到集群这个话题,也就是部署多台服务器共同对外提供服务,从而做到提升系统吞吐量,优化系统的整体性能以及稳定性等目的。
|
2月前
|
算法 网络架构
计算机网络: 点对点协议 PPP
计算机网络: 点对点协议 PPP
29 0
|
4天前
|
网络协议 视频直播 SDN
计算机网络:TCP协议的三次握手和四次挥手与UDP协议区别.
计算机网络:TCP协议的三次握手和四次挥手与UDP协议区别.
16 1
|
2月前
|
机器学习/深度学习 网络协议 网络性能优化
[计算机网络]深度学习传输层TCP协议
[计算机网络]深度学习传输层TCP协议
33 1
|
2月前
|
网络协议 C语言 网络架构
计算机网络——数据链路层-点对点协议(组成部分、PPP帧格式、透明传输、差错检测、工作状态)
计算机网络——数据链路层-点对点协议(组成部分、PPP帧格式、透明传输、差错检测、工作状态)
126 7