大数据实战平台环境搭建(上)

简介: 大数据实战平台环境搭建(上)

一、创建 Hadoop 用户

1、创建 Hadoop 用户,输入最开始的密码

图1:创建 Hadoop 用户

打开Ubuntu终端Terminal运行sudo useradd -m hadoop -s /bin/bash用于创建用户,系统需要等待我们输入密码(注意的是Ubuntu终端输入密码是不会显示的)。输入完密码后重新弹出nuyoah@nuyoah-VirtualBox:-$这个才算创建成功。

2、设置Hadoop账户密码

图2:设置Hadoop账户密码

在Ubuntu终端输入sudo passwd hadoop为Hadoop账号设置账号密码,通过输入和确认密码完成对于Hadoop账号密码的设置。

3、赋权

图3:为Hadoop用户赋权

在Ubuntu终端输入sudo adduser hadoop sudo为Hadoop用户赋权

二、更新apt和安装Vim编辑器

1、切换Hadoop用户,并输入密码

图4:切换Hadoop用户,并输入密码

在Ubuntu终端输入su hadoop切换成hadoop用户。

(必须切换到hadoop用户,不然后面会有问题。)

2、更新 apt

图5:更新apt

首先要确认已经切换到了hadoop用户,接着在终端输入sudo apt-get update使得hadoop用户更新apt,为接下来下载vim做准备。

3、安装 vim 编辑器

图6:安装vim编译器

在终端输入sudo apt-get install vim下载vim编译器。(vim编译器的作用:创建、维护或修改文本文件,维护Linux系统中的各种配置文件。)

当出现Do you want to continue?的时候需要我们输入y进行确认。(这里大小写都可以。)

图7:vim编译器安装完成

三、安装 SSH 和配置 SSH 无密码登录

1、安装 SSH 服务端

图8:安装 SSH 服务端

在终端输入sudo apt-get install openssh-server安装openssh。(OpenSSH 是 SSH (Secure SHell) 协议的免费开源实现OpenSSH提供了服务端后台程序和客户端工具,用来加密远程控制和文件传输过程中的数据,并由此来代替原来的类似服务。)

当出现Do you want to continue?的时候需要我们输入y进行确认。(这里大小写都可以。)

图9: SSH 服务端安装完成

2、登录本机

图10:登录本机

在终端输入ssh localhost请求登录本机。注意这里的确认要填的是yes。

图11:输入hadoop用户密码

图12:成功登录本机

3、配置无密码登录

图13:退出openssh并进去ssh文件夹

在终端输入exit退出openssh,当出现Connection to localhost closed.表示成功退出openssh。接着在终端输入cd ~/.ssh/进入ssh文件夹内。

图14:生成密钥并保存

在终端输入ssh-keygen -t rsa生成密钥,接着要等相关指令出来后按enter回车键(一共三次)。完成后我们能看到密钥和公钥都保存在了/home/hadoop/.ssh/里面。

图15:查看/.ssh下的文件

在终端输入ll查看/.ssh下的所有文件,确保密钥和公钥都保存在了这里。

4、确认配置成功

图16:确认配置成功

在终端输入cat ./id_rsa.pub >> ./authorized_kays加入授权,接着输入ssh localhost测试无密码登录ssh,最后输入exit退出ssh。

四、安装 Java

1、拖拽安装包到 downloads

图17:将下载好的安装包拖拽到 Downloads

图18:成功拖拽安装包到 Downloads

2、Hadoop用户下进入Downloads文件夹

图19:查看Downloads文件夹位置

注意要在Hadoop用户下进入Downloads。(在Ubuntu终端输入su hadoop切换成hadoop用户。)

我这里是将安装包保存在nuyoah/Downloads下。(注意nuyoah是我最开始设置的用户名)通过终端输入ll查看downloads文件夹位置。

图20:进入Downloads文件夹

进入Downloads文件夹后,在终端输入ll确认Downloads文件夹有刚刚拖进来的安装包。

3、创建jvm文件夹

图21:创建jvm文件夹

在终端输入sudo mkdir /usr/lib/jvm创建jvm文件夹。(出现Permission denied错误表示要在指令前加“sudo”。)

4、将:JDK安装包复制到 jvm 文件夹下

图22:将:JDK安装包复制到 jvm 文件夹

在终端输入sudo cp jdk-8u211-linux-x64.gz /uer/lib/jvm复制JDK安装包到 jvm 文件夹,其中sudo是给权限,cp是复制,jdk-8u211-linux-x64.gz是要复制的文件名,/uer/lib/jvm是要复制到的路径。在终端输入cd /uer/lib/jvm以及ll到目标文件夹下查看是否完成复制。

5、解压

图23:解压jdk

在终端输入sudo tar -zxvf ./jdk-8u211-linux-x64.gz -C /uer/lib/jvm解压指令对jdk文件解压。(-zxvf :z代表gzip的压缩包;x代表解压;v代表显示过程信息;f代表后面接的是文件)

需要记住jdk1.8.0_211/这个文件夹,后面环境配置时需要。

图24:解压完成

图25:确认解压是否成功

在终端输入cd jdk1.8.0_211/进入该文件夹确认解压是否成功,如果该文件夹为空则前面某一步有问题导致解压不成功,反之则为解压成功。

6、配置环境变量

图26:进入环境变量配置

在终端输入cd …返回上一级文件夹,再输入vim ~/.bashrc进入环境变量配置。

图27:进入环境变量

进入环境变量,此时补课编辑,只可查看。需要按“i”进入 insert 模式。

图28:配置环境变量

图29:按 ESC 保存,然后 shift+:wq

按 ESC 保存,然后 shift+:wq退出环境配置。

图30:确认jdk安装成功

在终端输入source ~/.bashrc激活刚刚配置的环境变量,接着在终端输入java -version查看java版本,确认jdk安装成功。

五、安装单机 Hadoop

1、确认文件及文件夹

图31:确认文件及文件夹

在终端进入Downloads文件夹确认hadoop的安装包在该文件夹内。

2、解压安装包到/usr/local下

图32:解压安装包到/usr/local

在终端输入sudo tar -zxvf hadoop-3.1.3.tar.gz -C /uer/local解压指令对hadoop文件解压。(-zxvf :z代表gzip的压缩包;x代表解压;v代表显示过程信息;f代表后面接的是文件)

图33:解压完成

Hadoop安装包解压完成,其中hadoop-3.1.3/是解压后的文件夹的名称。

3、修改目录名及目录权限

图34:修改目录名及目录权限

在终端输入cd /uer/local进入local文件夹,通过ll查看改文件夹内的文件。为了方便,通过输入sudo mv ./hadoop-3.1.3/ ./hadoop将文件夹hadoop-3.1.3的名字改成了hadoop。通过输入sudo chown -R hadoop ./hadoop修改权限。

4、查看版本信息

图35:查看版本信息

在终端输入cd hadoop/进入hadoop文件夹,再输入./bin/hadoop version查看版本信息。

5、测试

图36:复制文件到新建文件夹input内

在终端输入mkdir input新建文件夹input,接着输入cp ./etc/hadoop/.xml ./input(其中.xml代表所有的.xml文件),此行目的是将uer/local/hadoop/etc/hadoop下的所有的.xml文件复制到input文件夹内。

通过cd input进入input文件夹我们确认了复制成功。

图37:测试

在终端输入./bin/hadoop jar /usr/loacl/hadoop/share/hadoop/mapreduce/

hadoop-mapreduce-examples-3.1.3.jar grep ./input ./output 'dfs[a-z.]+'测试指令进行测试。

图38:测试完成

测试完成,在终端输入cat ./output/*查看输出数据。

六、Hadoop 伪分布式安装

1、修改配置文件(在etc/hadoop下)

图39:查看要修改的配置文件

通过终端cd etc/hadoop进入etc/hadoop查看要修改的配置文件。通过查看得知需要配置core-site.xml和hdfs-site.xml两个文件夹。

在终端输入vim core-site.xml使用vim编辑器配置。

图40:进入core-site.xml

图41:core-site.xml配置完成

2、配置

图42:配置hdfs-site.xml

在终端输入vim hdfs-site.xml使用vim编辑器配置。

图43:进入hdfs-site.xml

图44:hdfs-site.xml配置完成

3、初始化

图45:初始化

在终端输入cd /usr/local/hadoop回到/usr/local/hadoop文件夹,再输入bin/hdfs namenode -format进行初始化。

图46:初始化成功

大数据实战平台环境搭建(下)https://developer.aliyun.com/article/1507494?spm=a2c6h.13148508.setting.52.1b484f0eD2AqhJ

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
4月前
|
数据可视化 关系型数据库 MySQL
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
|
7月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
9月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
7月前
|
数据采集 人工智能 大数据
10倍处理效率提升!阿里云大数据AI平台发布智能驾驶数据预处理解决方案
阿里云大数据AI平台推出智能驾驶数据预处理解决方案,助力车企构建高效稳定的数据处理流程。相比自建方案,数据包处理效率提升10倍以上,推理任务提速超1倍,产能翻番,显著提高自动驾驶模型产出效率。该方案已服务80%以上中国车企,支持多模态数据处理与百万级任务调度,全面赋能智驾技术落地。
1023 0
|
9月前
|
存储 SQL 分布式计算
别让你的数据“裸奔”!大数据时代的数据隐私保护实战指南
别让你的数据“裸奔”!大数据时代的数据隐私保护实战指南
433 19
|
8月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
431 0
|
4月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
391 0
|
9月前
|
SQL 分布式计算 大数据
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
本文深入介绍 Hive 与大数据融合构建强大数据仓库的实战指南。涵盖 Hive 简介、优势、安装配置、数据处理、性能优化及安全管理等内容,并通过互联网广告和物流行业案例分析,展示其实际应用。具有专业性、可操作性和参考价值。
大数据新视界 --大数据大厂之Hive与大数据融合:构建强大数据仓库实战指南
|
7月前
|
分布式计算 算法 大数据
大数据时代的智能研发平台需求与阿里云DIDE的定位
阿里云DIDE是一站式智能大数据开发与治理平台,致力于解决传统大数据开发中的效率低、协同难等问题。通过全面整合资源、高度抽象化设计及流程自动化,DIDE显著提升数据处理效率,降低使用门槛,适用于多行业、多场景的数据开发需求,助力企业实现数字化转型与智能化升级。
333 1