Redis经典问题:数据并发竞争

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 在大流量系统中,数据并发竞争可能导致系统性能下降和崩溃。为解决此问题,可以采取加写回操作和互斥锁,确保数据一致性并减少写操作对缓存的影响。另外,保持缓存数据多个备份能降低并发竞争概率。通过实例展示了如何在电商网站中应用这些策略,从而提高系统稳定性和性能。关注微信公众号“软件求生”获取更多技术分享。

大家好,我是小米!今天我们要聊的话题是在大流量系统中常见的一个问题:数据并发竞争。不管是火车票系统还是微博系统,一旦出现数据并发竞争,都可能导致用户体验下降,甚至系统崩溃。那么,我们该如何解决这个问题呢?让我们一起来深入探讨!

数据并发竞争

当我们谈论大流量系统时,常常会面临着一个不可避免的挑战:数据并发竞争。无论是在线购票系统还是社交网络平台,一旦出现了并发读写的情况,系统的性能和稳定性都会受到极大的考验。想象一下,当某个火车车次的缓存信息过期,但却有大量用户在查询车次信息时,系统会面临着巨大的读取压力;或者是在微博系统中,某条热门微博的缓存突然失效,但用户们却在疯狂转发、评论、点赞。这些情况都可能导致数据并发竞争,给系统带来极大的挑战。因此,我们迫切需要有效的解决方案来解决这一问题。

解决方案

针对数据并发竞争的问题,我们可以采取以下两种解决方案:

1. 加写回操作加互斥锁,查询失败默认值快速返回

加写回操作是指在数据更新时,不立即更新缓存,而是等待下一次读取时再更新。这样做的好处是可以减少写操作对缓存的影响,提高系统性能。同时,通过加入互斥锁,可以确保在写入数据时不会被其他线程读取到脏数据。当查询失败时,可以快速返回默认值,避免用户长时间等待。

2. 对缓存数据保持多个备份,减少并发竞争的概率

保持多个缓存数据备份是为了降低单点故障的风险,同时也可以减少并发竞争的概率。当某个缓存数据被读取或写入时,可以选择其中一个备份进行操作,避免多个线程同时操作同一份数据,从而减少并发竞争的发生。

实践案例

让我们通过一个实际案例来进一步理解以上解决方案。假设我们正在开发一个电商网站,其中包含大量商品信息。为了提高系统性能,我们使用Redis作为缓存数据库。但是,由于商品信息经常发生变化,导致缓存数据频繁失效,从而引发了数据并发竞争的问题。

为了解决这个问题,我们采取了上述两种解决方案。首先,我们实现了加写回操作,并在更新数据时加入了互斥锁,以确保数据的一致性和准确性。其次,我们对缓存数据保持了多个备份,当某个备份数据被读取或写入时,可以选择其他备份进行操作,从而减少了并发竞争的发生。

通过以上措施的实施,我们成功解决了数据并发竞争的问题,提高了系统的稳定性和性能,为用户提供了更好的购物体验。

END

在大流量系统中,数据并发竞争是一个常见的问题,但并不是不可解决的。通过合理的方案和实践经验,我们可以有效地降低并发竞争的概率,提高系统的稳定性和性能。希望本文能对大家有所启发,也欢迎大家分享自己的经验和看法,让我们共同进步,共创美好未来!

文章到这里就结束了,如果你对这个话题还有疑问或者想了解更多内容,欢迎在评论区留言,我会尽快回复你的。同时也欢迎大家关注我的微信公众号软件求生,获取更多有趣的技术分享和实用的开发经验。感谢大家的阅读,我们下期再见!

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
|
10天前
|
NoSQL Redis
Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略,分为淘汰易失数据和淘汰全库数据两大类。易失数据淘汰策略包括:volatile-lru、volatile-lfu、volatile-ttl 和 volatile-random;全库数据淘汰策略包括:allkeys-lru、allkeys-lfu 和 allkeys-random。此外,还有 no-eviction 策略,禁止驱逐数据,当内存不足时新写入操作会报错。
44 16
|
1月前
|
监控 NoSQL Java
场景题:百万数据插入Redis有哪些实现方案?
场景题:百万数据插入Redis有哪些实现方案?
40 1
场景题:百万数据插入Redis有哪些实现方案?
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
|
10天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
10天前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
46 14
|
10天前
|
存储 NoSQL 算法
Redis分片集群中数据是怎么存储和读取的 ?
Redis集群采用哈希槽分区算法,共有16384个哈希槽,每个槽分配到不同的Redis节点上。数据操作时,通过CRC16算法对key计算并取模,确定其所属的槽和对应的节点,从而实现高效的数据存取。
39 13
|
10天前
|
存储 NoSQL Redis
Redis的数据过期策略有哪些 ?
Redis 采用两种过期键删除策略:惰性删除和定期删除。惰性删除在读取键时检查是否过期并删除,对 CPU 友好但可能积压大量过期键。定期删除则定时抽样检查并删除过期键,对内存更友好。默认每秒扫描 10 次,每次检查 20 个键,若超过 25% 过期则继续检查,单次最大执行时间 25ms。两者结合使用以平衡性能和资源占用。
34 11
|
10天前
|
监控 NoSQL 测试技术
【赵渝强老师】Redis的AOF数据持久化
Redis 是内存数据库,提供数据持久化功能,支持 RDB 和 AOF 两种方式。AOF 以日志形式记录每个写操作,支持定期重写以压缩文件。默认情况下,AOF 功能关闭,需在 `redis.conf` 中启用。通过 `info` 命令可监控 AOF 状态。AOF 重写功能可有效控制文件大小,避免性能下降。
|
10天前
|
存储 监控 NoSQL
【赵渝强老师】Redis的RDB数据持久化
Redis 是内存数据库,提供数据持久化功能以防止服务器进程退出导致数据丢失。Redis 支持 RDB 和 AOF 两种持久化方式,其中 RDB 是默认的持久化方式。RDB 通过在指定时间间隔内将内存中的数据快照写入磁盘,确保数据的安全性和恢复能力。RDB 持久化机制包括创建子进程、将数据写入临时文件并替换旧文件等步骤。优点包括适合大规模数据恢复和低数据完整性要求的场景,但也有数据完整性和一致性较低及备份时占用内存的缺点。

相关产品

  • 云数据库 Tair(兼容 Redis)