面试官:素有Java锁王称号的‘StampedLock’你知道吗?我:这什么鬼?

简介: 【5月更文挑战第9天】面试官:素有Java锁王称号的‘StampedLock’你知道吗?我:这什么鬼?

一、写在开头


我们在上一篇写ReentrantReadWriteLock读写锁的末尾留了一个小坑,那就是读写锁因为写锁的悲观性,会导致 “写饥饿”,这样一来会大大的降低读写效率,而今天我们就来将此坑填之!填坑工具为:StampedLock,一个素有Java锁王称号的同步类,也是在 java.util.concurrent.locks 包中。

需要声明的是,这个类在Java的面试过程中极少被问及,如果仅仅是为了准备面试的话,这部分内容可以忽略,但这个类的实现逻辑还是值得一学的。


二、StampedLock 是什么?


StampedLock是由Java8时引入的一个性能更好的读写锁,作者:Doug Lea,支持读锁、写锁,这与ReentrantReadWriteLock类似,但同时多了一个乐观读锁的实现,这一点直接提升了它的性能。


三、StampedLock的原理


虽然StampedLock性能更好,但是!不可重入且不支持条件变量 Condition,且并没有直接实现Lock或者ReadWriteLock接口,而是与AQS类似的采用CLH(Craig, Landin, and Hagersten locks)作为底层实现。

在Java的官方docs中对于它进行了如下的描述:
image.png

并且官方还提供了一个示例,我们来看一下:

class Point {
   
    //共享变量
   private double x, y;
   private final StampedLock sl = new StampedLock();

   // 写锁的使用
   void move(double deltaX, double deltaY) {
   
     long stamp = sl.writeLock(); //涉及对共享资源的修改,使用写锁-独占操作
     try {
   
       x += deltaX;
       y += deltaY;
     } finally {
   
       sl.unlockWrite(stamp); // 释放写锁
     }
   }

      /**
     * 使用乐观读锁访问共享资源
     * 注意:乐观读锁在保证数据一致性上需要拷贝一份要操作的变量到方法栈,并且在操作数据时候                    可能其他写线程已经修改了数据,
     * 而我们操作的是方法栈里面的数据,也就是一个快照,所以最多返回的不是最新的数据,但是一致性还是得到保障的。
     *
     * @return
     */
   double distanceFromOrigin() {
   
     long stamp = sl.tryOptimisticRead(); // 获取乐观读锁
     double currentX = x, currentY = y;    // 拷贝共享资源到本地方法栈中
     if (!sl.validate(stamp)) {
    // //检查乐观读锁后是否有其他写锁发生,有则返回false
        stamp = sl.readLock(); // 获取一个悲观读锁
        try {
   
          currentX = x;
          currentY = y;
        } finally {
   
           sl.unlockRead(stamp); // 释放悲观读锁
        }
     }
     return Math.sqrt(currentX * currentX + currentY * currentY);
   }

   // 悲观读锁以及读锁升级写锁的使用
   void moveIfAtOrigin(double newX, double newY) {
   
     long stamp = sl.readLock(); // 悲观读锁
     try {
   
       while (x == 0.0 && y == 0.0) {
   
         // 读锁尝试转换为写锁:转换成功后相当于获取了写锁,转换失败相当于有写锁被占用
         long ws = sl.tryConvertToWriteLock(stamp);

         if (ws != 0L) {
    // 如果转换成功
           stamp = ws; // 读锁的票据更新为写锁的
           x = newX;
           y = newY;
           break;
         }
         else {
    // 如果转换失败
           sl.unlockRead(stamp); // 释放读锁
           stamp = sl.writeLock(); // 强制获取写锁
         }
       }
     } finally {
   
       sl.unlock(stamp); // 释放所有锁
     }
   }
}

在StampedLock 的底层提供了三种锁

  1. 写锁: 独占锁,一把锁只能被一个线程获得。当一个线程获取写锁后,其他请求读锁和写锁的线程必须等待。类似于 ReentrantReadWriteLock 的写锁,不过这里的写锁是不可重入的。
  2. 读锁 (悲观读):共享锁,没有线程获取写锁的情况下,多个线程可以同时持有读锁。如果己经有线程持有写锁,则其他线程请求获取该读锁会被阻塞。类似于 ReentrantReadWriteLock 的读锁,不过这里的读锁是不可重入的。
  3. 乐观读 :允许多个线程获取乐观读以及读锁。同时允许一个写线程获取写锁。

【源码示例】

// 写锁
public long writeLock() {
   
    long s, next;  // bypass acquireWrite in fully unlocked case only
    return ((((s = state) & ABITS) == 0L &&
             U.compareAndSwapLong(this, STATE, s, next = s + WBIT)) ?
            next : acquireWrite(false, 0L));
}
// 读锁
public long readLock() {
   
    long s = state, next;  // bypass acquireRead on common uncontended case
    return ((whead == wtail && (s & ABITS) < RFULL &&
             U.compareAndSwapLong(this, STATE, s, next = s + RUNIT)) ?
            next : acquireRead(false, 0L));
}
// 乐观读
public long tryOptimisticRead() {
   
    long s;
    return (((s = state) & WBIT) == 0L) ? (s & SBITS) : 0L;
}

StampedLock 在获取锁的时候会返回一个 long 型的数据戳,该数据戳用于稍后的锁释放参数,如果返回的数据戳为 0 则表示锁获取失败。当前线程持有了锁再次获取锁还是会返回一个新的数据戳,这也是StampedLock不可重入的原因。此外,在官网给的示例中我们也看到了,StampedLock 还支持这3种锁的转换:

long tryConvertToWriteLock(long stamp){
   }
long tryConvertToReadLock(long stamp){
   }
long tryConvertToOptimisticRead(long stamp){
   }

内部常量说明

在源码中我们看到,无论哪种锁,在获取的时候都会返回一个long类型的时间戳,这其实就是StampedLock命名的由来,而这个时间戳的第8位用来标识写锁,前 7 位(LG_READERS)来表示读锁,每获取一个悲观读锁,就加 1(RUNIT),每释放一个悲观读锁,就减 1。而悲观读锁最多只能装 128 个(7 位限制),很容易溢出,所以用一个 int 类型的变量来存储溢出的悲观读锁。

image.png


四、StampedLock的使用


结果上面的StampedLock特性和官方的示例,我们写一个小demo来感受一下它的使用,需要注意的是在获取乐观锁时,如果有写锁改变数据时,为保证数据一致性,要切换为普通的读锁模式。

【测试示例】

public class Test {
   

    private final StampedLock sl = new StampedLock();
    private int data = 0;

    public void write(int value) {
   
        long stamp = sl.writeLock();
        try {
   
            data = value;
        } finally {
   
            sl.unlockWrite(stamp);
        }
    }

    public int read() {
   
        long stamp = sl.tryOptimisticRead();
        int currentData = data;
        // 如果有写锁被占用,可能造成数据不一致,所以要切换到普通读锁模式
        if (!sl.validate(stamp)) {
   
            stamp = sl.readLock();
            try {
   
                currentData = data;
            } finally {
   
                sl.unlockRead(stamp);
            }
        }
        return currentData;
    }

    public static void main(String[] args) {
   
        Test test = new Test();

        Thread writer = new Thread(() -> {
   
            for (int i = 0; i < 5; i++) {
   
                test.write(i);
                System.out.println("当前线程" + Thread.currentThread().getName() + ":Write: " + i);
            }
        });

        Thread reader = new Thread(() -> {
   
            for (int i = 0; i < 5; i++) {
   
                int value = test.read();
                System.out.println("当前线程" + Thread.currentThread().getName() + ":Read: " + value);
            }
        });

        writer.start();
        reader.start();
    }
}

输出:

当前线程Thread-0:Write: 0
当前线程Thread-0:Write: 1
当前线程Thread-1:Read: 0
当前线程Thread-0:Write: 2
当前线程Thread-1:Read: 2
当前线程Thread-0:Write: 3
当前线程Thread-1:Read: 3
当前线程Thread-0:Write: 4
当前线程Thread-1:Read: 4
当前线程Thread-1:Read: 4

五、总结

相比于传统读写锁多出来的乐观读是StampedLock比 ReadWriteLock 性能更好的关键原因。StampedLock 的乐观读允许一个写线程获取写锁,所以不会导致所有写线程阻塞,也就是当读多写少的时候,写线程有机会获取写锁,减少了线程饥饿的问题,吞吐量大大提高。

不过,需要注意的是StampedLock不可重入,不支持条件变量 Condition,对中断操作支持也不友好(使用不当容易导致 CPU 飙升)。如果你需要用到 ReentrantLock 的一些高级性能,就不太建议使用 StampedLock 了。

六、结尾彩蛋

如果本篇博客对您有一定的帮助,大家记得留言+点赞+收藏呀。原创不易,转载请联系Build哥!

目录
相关文章
|
1天前
|
缓存 安全 Java
【Java面试——并发基础、并发关键字】
随着硬件指令集的发展,我们可以使用基于冲突检测的乐观并发策略: 先进行操作,如果没有其它线程争用共享数据,那操作就成功了,否则采取补偿措施(不断地重试,直到成功为止)。这种乐观的并发策略的许多实现都不需要将线程阻塞,因此这种同步操作称为非阻塞同步。 乐观锁需要操作和冲突检测这两个步骤具备原子性,这里就不能再使用互斥同步来保证了,只能靠硬件来完成。硬件支持的原子性操作最典型的是: 比较并交换(Compare-and-Swap,CAS)。CAS 指令需要有 3 个操作数,分别是内存地址 V、旧的预期值 A 和新值 B。当执行操作时,只有当 V 的值等于 A,才将 V 的值更新为 B。
|
9天前
|
SQL 存储 Java
致远互联java实习生面试
致远互联java实习生面试
29 0
|
9天前
|
Java C++
java面试基础 -- 深克隆 & 浅克隆
java面试基础 -- 深克隆 & 浅克隆
11 1
|
9天前
|
Java
java面试基础 -- 普通类 & 抽象类 & 接口
java面试基础 -- 普通类 & 抽象类 & 接口
14 0
|
9天前
|
存储 安全 Java
java面试基础 -- ArrayList 和 LinkedList有什么区别, ArrayList和Vector呢?
java面试基础 -- ArrayList 和 LinkedList有什么区别, ArrayList和Vector呢?
17 0
|
9天前
|
Java
java面试基础 -- 方法重载 & 方法重写
java面试基础 -- 方法重载 & 方法重写
9 0
|
11天前
|
消息中间件 存储 Java
Java分布式技术面试总结(全面,实时更新)
Java分布式技术面试总结(全面,实时更新)
|
11天前
|
监控 Java Nacos
Java微服务框架面试总结(全面,实时更新)
Java微服务框架面试总结(全面,实时更新)
|
11天前
|
缓存 NoSQL Redis
Java技术栈Redis面试总结(全面,实时更新)
Java技术栈Redis面试总结(全面,实时更新)
|
11天前
|
存储 算法 安全
Java高级进阶面试总结(全面,实时更新)
Java高级进阶面试总结(全面,实时更新)