R语言实现蒙特卡洛模拟算法

简介: R语言实现蒙特卡洛模拟算法

该篇文章利用介绍了蒙特·卡罗算法及其主要步骤;优点;局限性,同时利用R语言对实际案例进行蒙特卡罗模拟演示。

1 蒙特·卡罗算法简介

  蒙特·卡罗(Monte Carlo)算法,也称为蒙特卡洛方法或统计模拟方法,是一种基于随机采样的数值计算方法。它的基本思想是通过大量的随机采样来估计某个难以直接计算的值,从而得到近似结果。蒙特卡罗方法在各种领域都有广泛的应用,如计算物理、金融工程、统计学、计算机科学等。

  蒙特·卡罗方法的核心是随机性和大数定律。通过生成随机数或伪随机数,蒙特卡罗方法能够模拟各种复杂的随机过程,并通过统计这些随机过程的结果来得到问题的近似解。随着采样次数的增加,蒙特卡罗方法的估计结果将逐渐逼近真实值,这是由大数定律保证的。

2 蒙特·卡罗方法主要步骤

  蒙特卡罗方法的主要步骤如下:

  1. 定义问题:明确需要求解的问题,确定问题的目标函数或概率分布。
  2. 生成随机数:根据问题的需要,生成相应分布的随机数或伪随机数。
  3. 模拟过程:使用生成的随机数模拟问题的随机过程,如物理实验、金融交易等。
  4. 统计结果:收集模拟过程中的数据,并计算所需的统计量,如平均值、方差等。
  5. 估计结果:根据统计结果,估计问题的近似解,并给出相应的置信区间或误差分析。

3 蒙特·卡罗方法优点

  蒙特卡罗方法的优点包括:

  1. 通用性:蒙特卡罗方法适用于各种类型的问题,只要问题可以转化为随机过程进行模拟。
  2. 灵活性:蒙特卡罗方法可以根据问题的特点进行定制和优化,如采用重要性采样、分层采样等技术提高采样效率。
  3. 易于实现:蒙特卡罗方法的算法相对简单,易于编程实现和并行化。

4 蒙特·卡罗方法局限性

  蒙特卡罗方法的局限性主要表现在以下三个方面:

  1. 计算成本:为了得到较为准确的结果,蒙特卡罗方法通常需要大量的采样次数,这可能导致较高的计算成本。
  2. 收敛速度:蒙特卡罗方法的收敛速度通常与问题的维度和复杂性有关,对于高维或复杂问题,可能需要更长的计算时间。
  3. 随机性:蒙特卡罗方法的结果受到随机数生成器的影响,不同的随机数序列可能导致结果的波动。因此,在使用蒙特卡罗方法时,需要选择合适的随机数生成器并进行充分的测试。

5 蒙特·卡罗方法的代码实现——基于R

5.1 求圆周率π \piπ

  运行程序:

library('ggplot2')
f <- function(r){
  sqrt(1-r^2)
}
x <- seq(0,1,length=3000)
y <- f(x)
df <- data.frame(x,y)
ggplot(df, mapping = aes(x=x,y=y))+
  geom_line()+geom_ribbon(aes(ymin=0, ymax=y, x = x), 
                          fill="red", alpha=0.2)+
  geom_hline(yintercept = c(0,1))+geom_vline(xintercept = c(0,1))
  
##计数函数
MC1 <- function(n){
  k <- 0
  x <- runif(n, 0, 1)
  y <- runif(n, 0, 1) #从已知概率分布中抽样
  for (i in 1:n){
    if (y[i] < f(x[i]))
      k <- k+1
  }
  k/n #建立所需的统计量
}
4*MC1(10000000)

  运行结果:

3.141294

5.2 计算定积分

  运行程序:

library('ggplot2')
f <- function(x){
  log(1+x)/(1+x^2)
}
x <- seq(0,1,length=50)
y <- f(x)
df <- data.frame(x,y)
ggplot(df, mapping = aes(x=x,y=y))+geom_line()
ggplot(df, mapping = aes(x=x,y=y))+
  geom_line()+geom_ribbon(aes(ymin=0, ymax=y, x = x), 
                          fill="red", alpha=0.2)+
  geom_hline(yintercept = c(0,1))+geom_vline(xintercept = c(0,1))
##计数函数
MC1 <- function(n){
  k <- 0
  x <- runif(n, 0, 1)
  y <- runif(n, 0, 1) #从已知概率分布中抽样
  for (i in 1:n){
    if (y[i] < f(x[i]))
      k <- k+1
  }
  k/n #建立所需的统计量
}
MC1(10000000)

  运行结果:

0.2721784

  该积分正确结果为:0.27057,蒙特卡洛模拟结果逼近正确结果。

5.3 蒙特卡罗算法在项目管理中的应用

  运行程序:

x <- seq(7,35,length = 100)
y1 <- dnorm(x, mean = 14, sd = 2)#dnorm正态分布概率密度函数值
y2 <- dnorm(x, mean = 23, sd = 3)
y3 <- dnorm(x, mean = 22, sd = 4)
data <- data.frame(x,y1,y2,y3)
colnames(data) <- c("x","y1","y2","y3")
ggplot(data)+
  geom_line(aes(x=x,y=y1), color = "red")+
  geom_line(aes(x=x,y=y2), color = "blue")+
  geom_line(aes(x=x,y=y3), color = "green")+
  theme_classic()
#构建蒙特卡罗模拟
MC2 <- function(n){
  y1 <- rnorm(n , mean = 14, sd = 2) #从已知概率分布中抽样
  y2 <- rnorm(n , mean = 23, sd = 3)
  y3 <- rnorm(n , mean = 22, sd = 4)
  y <- y1 + y2 + y3 #构造问题的概率模型
  result <- c(mean(y),var(y)) #建立所需的统计量,即样本均值和样本方差
  return(result)
}
result <- MC2(100000)
print(result)

  运行结果:

[1] 58.96622 28.98157

  运行程序:

x <- seq(7,80,length = 1000)
data <- data.frame(x,y1 <- dnorm(x, mean = 14, sd = 2),
                   dnorm(x, mean = 23, sd = 3),
                   dnorm(x, mean = 22, sd = 4),
                   dnorm(x, mean = result[1], 
                         sd = result[2]^0.5))
colnames(data) <- c("x","y1","y2","y3","y")
ggplot(data)+
  geom_line(aes(x=x,y=y1), color = "red")+
  geom_line(aes(x=x,y=y2), color = "blue")+
  geom_line(aes(x=x,y=y3), color = "green")+
  geom_line(aes(x=x,y=y))+
  theme_classic()

  运行结果:


相关文章
|
7月前
|
机器学习/深度学习 存储 算法
用kNN算法诊断乳腺癌--基于R语言
用kNN算法诊断乳腺癌--基于R语言
|
3月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
3月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
367 1
|
7月前
|
算法 搜索推荐
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
|
7月前
|
存储 机器学习/深度学习 算法
R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
R语言贝叶斯Metropolis-Hastings采样 MCMC算法理解和应用可视化案例
|
7月前
|
算法 数据可视化 数据挖掘
R语言平滑算法LOESS局部加权回归、三次样条、变化点检测拟合电视节目《白宫风云》在线收视率
R语言平滑算法LOESS局部加权回归、三次样条、变化点检测拟合电视节目《白宫风云》在线收视率
|
7月前
|
机器学习/深度学习 数据采集 SQL
R语言K-Means(K均值聚类)和层次聚类算法对微博用户特征数据研究
R语言K-Means(K均值聚类)和层次聚类算法对微博用户特征数据研究
|
7月前
|
算法 数据可视化 数据挖掘
数据分享|R语言改进的K-MEANS(K-均值)聚类算法分析股票盈利能力和可视化
数据分享|R语言改进的K-MEANS(K-均值)聚类算法分析股票盈利能力和可视化
|
7月前
|
数据可视化 算法
R语言Apriori算法关联规则对中药用药复方配伍规律药方挖掘可视化(下)
R语言Apriori算法关联规则对中药用药复方配伍规律药方挖掘可视化(下)
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
下一篇
DataWorks