【Python实战】——神经网络识别手写数字(二)

简介: 【Python实战】——神经网络识别手写数字(三)

【Python实战】——神经网络识别手写数字(一)+https://developer.aliyun.com/article/1506500

2.3 神经网络模型定义

  运行程序:

ANN = NeuralNetwork(num_of_in_nodes = image_pixels, #输入
                    num_of_out_nodes = 10, #输出节点数
                    num_of_hidden_nodes = 100,#隐藏节点
                    learning_rate = 0.1)#学习率

2.4 模型训练

2.4.1 预测概率

  运行程序:

for i in range(len(train_imgs)):
    ANN.train(train_imgs[i], train_labels_one_hot[i])
for i in range(20):
    res = ANN.run(test_imgs[i])
    print(test_labels[i], np.argmax(res), np.max(res))

  运行结果:

[7.] 7 0.9992648448921
[2.] 2 0.9040034245332168
[1.] 1 0.9992201001324703
[0.] 0 0.9923701545281887
[4.] 4 0.989297708155559
[1.] 1 0.9984582148795715
[4.] 4 0.9957673752296046
[9.] 9 0.9889417895800644
[5.] 6 0.5009071817613537
[9.] 9 0.9879513019542627
[0.] 0 0.9932950902790246
[6.] 6 0.9387061553685657
[9.] 9 0.9962530965286298
[0.] 0 0.9974524110371016
[1.] 1 0.9991354417269441
[5.] 5 0.7607733657668813
[9.] 9 0.9968080255475414
[7.] 7 0.9967748204232602
[3.] 3 0.8820920415159276
[4.] 4 0.9978584850755227

2.4.2 训练集正确率

  运行程序:

corrects, wrongs = ANN.evaluate(train_imgs, train_labels)#训练集判别正确和错误数量
print("accuracy train: ", corrects / ( corrects + wrongs))##正确率

  运行结果:

accuracy train:  0.9425333333333333

2.4.3 测试集正确率

  运行程序:

corrects, wrongs = ANN.evaluate(test_imgs, test_labels)
print("accuracy: test", corrects / ( corrects + wrongs))#测试集正确率

  运行结果:

accuracy: test 0.9412

2.4.4 训练集判别矩阵

  运行程序:

cm = ANN.confusion_matrix(train_imgs, train_labels)
print(cm)   #训练集判别矩阵

  运行结果:

[[5822    1   54   35   15   41   47   12   31   31]
 [   2 6638   62   31   17   24   21   64  163   14]
 [   6   19 5487   57   16    9    2   45   16    4]
 [   7   27   87 5773    3  130    3   16  148   67]
 [  11   11   68    8 5332   34   12   48   28   44]
 [  10    4    6   69    0 4952   34    5   32    5]
 [  31    5   53   19   49   96 5782    5   37    2]
 [   1    9   45   35    6    6    0 5812    5   28]
 [  20    9   70   32    9   37   15   11 5209    9]
 [  13   19   26   72  395   92    2  247  182 5745]]

2.4.5 不同数字预测精确率

  运行程序:

for i in range(10):
    print("digit: ", i, "precision: ", ANN.precision(i, cm))

  运行结果:

digit:  0 precision:  0.9829478304913051
digit:  1 precision:  0.9845743102936814
digit:  2 precision:  0.9209466263846928
digit:  3 precision:  0.9416082205186755
digit:  4 precision:  0.9127011297500855
digit:  5 precision:  0.9134845969378343
digit:  6 precision:  0.9770192632646164
digit:  7 precision:  0.9276935355147645
digit:  8 precision:  0.8902751666381815
digit:  9 precision:  0.9657085224407463

2.5 结果可视化

2.5.1 每次epoch训练预测情况

  运行程序:

epochs = 30
train_acc=[]
test_acc=[]
NN = NeuralNetwork(num_of_in_nodes = image_pixels, 
                   num_of_out_nodes = 10, 
                   num_of_hidden_nodes = 100,
                   learning_rate = 0.1)
for epoch in range(epochs):  
    print("epoch: ", epoch)
    for i in range(len(train_imgs)):
        NN.train(train_imgs[i], 
                 train_labels_one_hot[i])
  
    corrects, wrongs = NN.evaluate(train_imgs, train_labels)
    print("accuracy train: ", corrects / ( corrects + wrongs))
    train_acc.append(corrects / ( corrects + wrongs))
    corrects, wrongs = NN.evaluate(test_imgs, test_labels)
    print("accuracy: test", corrects / ( corrects + wrongs))
    test_acc.append(corrects / ( corrects + wrongs))

运行结果:

epoch:  0
accuracy train:  0.94455
accuracy: test 0.9422
epoch:  1
accuracy train:  0.9628
accuracy: test 0.9579
epoch:  2
accuracy train:  0.9699
accuracy: test 0.9637
epoch:  3
accuracy train:  0.9761166666666666
accuracy: test 0.9649
epoch:  4
accuracy train:  0.979
accuracy: test 0.9662
epoch:  5
accuracy train:  0.9820833333333333
accuracy: test 0.9679
epoch:  6
accuracy train:  0.9838166666666667
accuracy: test 0.9697
epoch:  7
accuracy train:  0.9845666666666667
accuracy: test 0.97
epoch:  8
accuracy train:  0.9855333333333334
accuracy: test 0.9703
epoch:  9
accuracy train:  0.9868166666666667
accuracy: test 0.97
epoch:  10
accuracy train:  0.9878166666666667
accuracy: test 0.9714
epoch:  11
accuracy train:  0.98845
accuracy: test 0.9716
epoch:  12
accuracy train:  0.98905
accuracy: test 0.9721
epoch:  13
accuracy train:  0.9898166666666667
accuracy: test 0.9723
epoch:  14
accuracy train:  0.9903
accuracy: test 0.9722
epoch:  15
accuracy train:  0.9907666666666667
accuracy: test 0.9719
epoch:  16
accuracy train:  0.9910833333333333
accuracy: test 0.9715
epoch:  17
accuracy train:  0.9918
accuracy: test 0.9714
epoch:  18
accuracy train:  0.9924166666666666
accuracy: test 0.971
epoch:  19
accuracy train:  0.99265
accuracy: test 0.9712
epoch:  20
accuracy train:  0.9932833333333333
accuracy: test 0.972
epoch:  21
accuracy train:  0.9939333333333333
accuracy: test 0.9716
epoch:  22
accuracy train:  0.9944333333333333
accuracy: test 0.972
epoch:  23
accuracy train:  0.9948
accuracy: test 0.9719
epoch:  24
accuracy train:  0.9950833333333333
accuracy: test 0.9718
epoch:  25
accuracy train:  0.9950833333333333
accuracy: test 0.9722
epoch:  26
accuracy train:  0.99525
accuracy: test 0.9725
epoch:  27
accuracy train:  0.9955833333333334
accuracy: test 0.972
epoch:  28
accuracy train:  0.9958166666666667
accuracy: test 0.9717
epoch:  29
accuracy train:  0.9962666666666666
accuracy: test 0.9717

2.5.2 迭代30次正确率绘图

  运行程序:

#正确率绘图
# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体  
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['font.family'] = 'SimHei'  
plt.rcParams['axes.unicode_minus'] = False   
import matplotlib.pyplot as plt 
x=np.arange(1,31,1)
plt.title('迭代30次正确率')
plt.plot(x, train_acc, color='green', label='训练集')
plt.plot(x, test_acc, color='red', label='测试集')
plt.legend() # 显示图例
plt.show()

  运行结果:

【Python实战】——神经网络识别手写数字(三)+https://developer.aliyun.com/article/1506502

相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
16天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
99 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
16天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
41 10
|
17天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
43 3
|
22天前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
36 6
|
25天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
48 8
|
24天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
28天前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
1月前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。
下一篇
DataWorks