【Python实战】——神经网络识别手写数字(一)

简介: 【Python实战】——神经网络识别手写数字

该篇文章以Python实战的形式利用神经网络识别mnist手写数字数据集,包括pickle操作,神经网络关键模型关键函数定义,识别效果评估及可视化等内容,建议收藏练手!

1 探索数据集

1.1 读取并显示数据示例

  运行程序:

import numpy as np
import matplotlib.pyplot as plt
image_size = 28 # width and length
num_of_different_labels = 10 #  i.e. 0, 1, 2, 3, ..., 9
image_pixels = image_size * image_size
train_data = np.loadtxt("D:\\mnist_train.csv", delimiter=",")
test_data = np.loadtxt("D:\\mnist_test.csv", delimiter=",") 
test_data[:10]#测试集前十行

  运行结果:

array([[7., 0., 0., ..., 0., 0., 0.],
       [2., 0., 0., ..., 0., 0., 0.],
       [1., 0., 0., ..., 0., 0., 0.],
       ...,
       [9., 0., 0., ..., 0., 0., 0.],
       [5., 0., 0., ..., 0., 0., 0.],
       [9., 0., 0., ..., 0., 0., 0.]])

1.2 数据集大小

  运行程序:

print(test_data.shape)
print(train_data.shape)

  运行结果:

(10000, 785)
(60000, 785)

  该mnist数据集训练集共10000个数据,有785维,测试集有60000个数据,785维。

1.3 自变量因变量构建

  运行程序:

##第一列为预测类别
train_imgs = np.asfarray(train_data[:, 1:]) / 255
test_imgs = np.asfarray(test_data[:, 1:]) / 255 
train_labels = np.asfarray(train_data[:, :1])
test_labels = np.asfarray(test_data[:, :1])

1.4 One-hot编码

  运行程序

import numpy as np
lable_range = np.arange(10)
for label in range(10):
    one_hot = (lable_range==label).astype(int)
    print("label: ", label, " in one-hot representation: ", one_hot)
    
    
# 将数据集的标签转换为one-hot label
label_range = np.arange(num_of_different_labels)
train_labels_one_hot = (label_range==train_labels).astype(float)
test_labels_one_hot = (label_range==test_labels).astype(float)

1.5 图像数据示例

  运行程序:

# 示例
for i in range(10):
    img = train_imgs[i].reshape((28,28))
    plt.imshow(img, cmap="Greys")
    plt.show()

  运行结果:

1.6 pickle包保存python对象

因为csv文件读取到内存比较慢,我们用pickle这个包来保存python对象(这里面python对象指的是numpy array格式的train_imgs, test_imgs, train_labels, test_labels)

  运行程序:

import pickle
with open("D:\\pickled_mnist.pkl", "bw") as fh:
    data = (train_imgs, 
            test_imgs, 
            train_labels,
            test_labels)
    pickle.dump(data, fh)

2 构建神经网络并训练

2.1 读取pickle文件

  运行程序:

import pickle
with open("D:\\19实验\\实验课大作业\\pickled_mnist.pkl", "br") as fh:
    data = pickle.load(fh)
train_imgs = data[0]
test_imgs = data[1]
train_labels = data[2]
test_labels = data[3]
train_labels_one_hot = (lable_range==train_labels).astype(float)
test_labels_one_hot = (label_range==test_labels).astype(float)
image_size = 28 # width and length
num_of_different_labels = 10 #  i.e. 0, 1, 2, 3, ..., 9
image_pixels = image_size * image_size

2.2 神经网络核心关键函数定义

  运行程序:

import numpy as np
def sigmoid(x):
    return 1 / (1 + np.e ** -x)
##激活函数
activation_function = sigmoid
from scipy.stats import truncnorm
##数据标准化
def truncated_normal(mean=0, sd=1, low=0, upp=10):
    return truncnorm((low - mean) / sd, 
                     (upp - mean) / sd, 
                     loc=mean, 
                     scale=sd)
##构建神经网络模型
class NeuralNetwork:
    
    def __init__(self, 
                 num_of_in_nodes, #输入节点数
                 num_of_out_nodes, #输出节点数
                 num_of_hidden_nodes,#隐藏节点数
                 learning_rate):#学习率
        self.num_of_in_nodes = num_of_in_nodes
        self.num_of_out_nodes = num_of_out_nodes
        self.num_of_hidden_nodes = num_of_hidden_nodes
        self.learning_rate = learning_rate 
        self.create_weight_matrices()
    #初始为一个隐藏节点    
    def create_weight_matrices(self):#创建权重矩阵
 
       # A method to initialize the weight 
        #matrices of the neural network#一种初始化神经网络权重矩阵的方法
        rad = 1 / np.sqrt(self.num_of_in_nodes)  
        X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)  #形成指定分布
        self.weight_1 = X.rvs((self.num_of_hidden_nodes, self.num_of_in_nodes)) #rvs:产生服从指定分布的随机数
        
        rad = 1 / np.sqrt(self.num_of_hidden_nodes)
        X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
        self.weight_2 = X.rvs((self.num_of_out_nodes, self.num_of_hidden_nodes)) #rvs: 产生服从指定分布的随机数
        
    
    def train(self, input_vector, target_vector):
      #
       # input_vector and target_vector can 
        #be tuple, list or ndarray
        #
        
        input_vector = np.array(input_vector, ndmin=2).T#输入
        target_vector = np.array(target_vector, ndmin=2).T#输出
        
        output_vector1 = np.dot(self.weight_1, input_vector) #隐藏层值
        output_hidden = activation_function(output_vector1)#删除不激活
        
        output_vector2 = np.dot(self.weight_2, output_hidden)#输出
        output_network = activation_function(output_vector2)##删除不激活
        
        # calculate output errors:计算输出误差
        output_errors = target_vector - output_network
        
        # update the weights:更新权重
        tmp = output_errors * output_network * (1.0 - output_network)     
        self.weight_2 += self.learning_rate  * np.dot(tmp, output_hidden.T)
        # calculate hidden errors:计算隐藏层误差
        hidden_errors = np.dot(self.weight_2.T, output_errors)
        
        # update the weights:
        tmp = hidden_errors * output_hidden * (1.0 - output_hidden)
        self.weight_1 += self.learning_rate * np.dot(tmp, input_vector.T)
        
    #测试集
    def run(self, input_vector):
        # input_vector can be tuple, list or ndarray
        input_vector = np.array(input_vector, ndmin=2).T
        
        output_vector = np.dot(self.weight_1, input_vector)
        output_vector = activation_function(output_vector)
        
        output_vector = np.dot(self.weight_2, output_vector)
        output_vector = activation_function(output_vector)
    
        return output_vector
    #判别矩阵
    def confusion_matrix(self, data_array, labels):
        cm = np.zeros((10, 10), int)
        for i in range(len(data_array)):
            res = self.run(data_array[i])
            res_max = res.argmax()
            target = labels[i][0]
            cm[res_max, int(target)] += 1
        return cm    
     #精确度
    def precision(self, label, confusion_matrix):
        col = confusion_matrix[:, label]
        return confusion_matrix[label, label] / col.sum()
    #评估
    def evaluate(self, data, labels):
        corrects, wrongs = 0, 0
        for i in range(len(data)):
            res = self.run(data[i])
            res_max = res.argmax()
            if res_max == labels[i]:
                corrects += 1
            else:
                wrongs += 1
        return corrects, wrongs

【Python实战】——神经网络识别手写数字(二)+https://developer.aliyun.com/article/1506501

相关文章
|
9天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
26 2
|
7天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
25 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
9天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
9天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
28 3
|
8天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
16 1
|
9天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
23 1
|
12天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
在Web开发中,前后端的高效交互是提升用户体验的关键。本文通过一个基于Flask框架的博客系统实战案例,详细介绍了如何使用AJAX和Fetch API实现不刷新页面查看评论的功能。从后端路由设置到前端请求处理,全面展示了这两种技术的应用技巧,帮助Python Web开发者提升项目质量和开发效率。
27 1
|
12天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
28 1
|
4天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
13 0

热门文章

最新文章