PandasTA 源码解析(二十一)(4)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
函数计算FC,每月15万CU 3个月
简介: PandasTA 源码解析(二十一)

PandasTA 源码解析(二十一)(3)https://developer.aliyun.com/article/1506317

.\pandas-ta\tests\test_indicator_volume.py

# 从.config中导入错误分析、示例数据、相关性、相关性阈值、详细模式
from .config import error_analysis, sample_data, CORRELATION, CORRELATION_THRESHOLD, VERBOSE
# 从.context中导入pandas_ta
from .context import pandas_ta
# 导入TestCase和skip
from unittest import TestCase, skip
# 导入pandas测试工具
import pandas.testing as pdt
# 导入DataFrame和Series
from pandas import DataFrame, Series
# 导入talib库,并重命名为tal
import talib as tal
# 定义测试Volume的测试类
class TestVolume(TestCase):
    # 设置测试类的一些初始属性
    @classmethod
    def setUpClass(cls):
        cls.data = sample_data
        # 将列名转换为小写
        cls.data.columns = cls.data.columns.str.lower()
        # 设置测试数据的open、high、low、close列
        cls.open = cls.data["open"]
        cls.high = cls.data["high"]
        cls.low = cls.data["low"]
        cls.close = cls.data["close"]
        # 如果数据中包含volume列,则设置volume_
        if "volume" in cls.data.columns:
            cls.volume_ = cls.data["volume"]
    # 清理测试类的一些属性
    @classmethod
    def tearDownClass(cls):
        del cls.open
        del cls.high
        del cls.low
        del cls.close
        # 如果存在volume属性,则删除
        if hasattr(cls, "volume"):
            del cls.volume_
        del cls.data
    # 设置测试方法的setUp方法
    def setUp(self): pass
    # 设置测试方法的tearDown方法
    def tearDown(self): pass
    # 测试ad方法
    def test_ad(self):
        # 调用pandas_ta中的ad方法,不使用talib
        result = pandas_ta.ad(self.high, self.low, self.close, self.volume_, talib=False)
        # 检查返回结果是否为Series类型
        self.assertIsInstance(result, Series)
        # 检查返回结果的名称是否为"AD"
        self.assertEqual(result.name, "AD")
        # 尝试使用talib计算AD指标并检查结果是否一致,不检查名称
        try:
            expected = tal.AD(self.high, self.low, self.close, self.volume_)
            pdt.assert_series_equal(result, expected, check_names=False)
        except AssertionError:
            # 如果结果不一致,则进行错误分析
            try:
                corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION)
                # 检查相关性是否大于相关性阈值
                self.assertGreater(corr, CORRELATION_THRESHOLD)
            except Exception as ex:
                # 如果出现异常,则进行错误分析
                error_analysis(result, CORRELATION, ex)
        # 再次调用pandas_ta中的ad方法,不使用talib
        result = pandas_ta.ad(self.high, self.low, self.close, self.volume_)
        # 检查返回结果是否为Series类型
        self.assertIsInstance(result, Series)
        # 检查返回结果的名称是否为"AD"
    # 测试ad_open方法
    def test_ad_open(self):
        # 调用pandas_ta中的ad方法,不使用talib
        result = pandas_ta.ad(self.high, self.low, self.close, self.volume_, self.open)
        # 检查返回结果是否为Series类型
        self.assertIsInstance(result, Series)
        # 检查返回结果的名称是否为"ADo"
    # 测试adosc方法
    def test_adosc(self):
        # 调用pandas_ta中的adosc方法,不使用talib
        result = pandas_ta.adosc(self.high, self.low, self.close, self.volume_, talib=False)
        # 检查返回结果是否为Series类型
        self.assertIsInstance(result, Series)
        # 检查返回结果的名称是否为"ADOSC_3_10"
        # 尝试使用talib计算ADOSC指标并检查结果是否一致,不检查名称
        try:
            expected = tal.ADOSC(self.high, self.low, self.close, self.volume_)
            pdt.assert_series_equal(result, expected, check_names=False)
        except AssertionError:
            # 如果结果不一致,则进行错误分析
            try:
                corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION)
                # 检查相关性是否大于相关性阈值
                self.assertGreater(corr, CORRELATION_THRESHOLD)
            except Exception as ex:
                # 如果出现异常,则进行错误分析
                error_analysis(result, CORRELATION, ex)
        # 再次调用pandas_ta中的adosc方法,不使用talib
        result = pandas_ta.adosc(self.high, self.low, self.close, self.volume_)
        # 检查返回结果是否为Series类型
        self.assertIsInstance(result, Series)
        # 检查返回结果的名称是否为"ADOSC_3_10"
    # 测试aobv方法
    def test_aobv(self):
        # 调用pandas_ta中的aobv方法
        result = pandas_ta.aobv(self.close, self.volume_)
        # 检查返回结果是否为DataFrame类型
        self.assertIsInstance(result, DataFrame)
        # 检查返回结果的名称是否为"AOBVe_4_12_2_2_2"
    # 测试 CMF 指标计算函数
    def test_cmf(self):
        # 调用 pandas_ta 库的 CMF 函数计算结果
        result = pandas_ta.cmf(self.high, self.low, self.close, self.volume_)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "CMF_20"
        self.assertEqual(result.name, "CMF_20")
    # 测试 EFI 指标计算函数
    def test_efi(self):
        # 调用 pandas_ta 库的 EFI 函数计算结果
        result = pandas_ta.efi(self.close, self.volume_)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "EFI_13"
        self.assertEqual(result.name, "EFI_13")
    # 测试 EOM 指标计算函数
    def test_eom(self):
        # 调用 pandas_ta 库的 EOM 函数计算结果
        result = pandas_ta.eom(self.high, self.low, self.close, self.volume_)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "EOM_14_100000000"
        self.assertEqual(result.name, "EOM_14_100000000")
    # 测试 KVO 指标计算函数
    def test_kvo(self):
        # 调用 pandas_ta 库的 KVO 函数计算结果
        result = pandas_ta.kvo(self.high, self.low, self.close, self.volume_)
        # 断言结果类型为 DataFrame
        self.assertIsInstance(result, DataFrame)
        # 断言结果的名称为 "KVO_34_55_13"
        self.assertEqual(result.name, "KVO_34_55_13")
    # 测试 MFI 指标计算函数
    def test_mfi(self):
        # 调用 pandas_ta 库的 MFI 函数计算结果,指定不使用 talib
        result = pandas_ta.mfi(self.high, self.low, self.close, self.volume_, talib=False)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "MFI_14"
        self.assertEqual(result.name, "MFI_14")
        try:
            # 尝试使用 talib 计算 MFI,并与 pandas_ta 计算结果进行比较
            expected = tal.MFI(self.high, self.low, self.close, self.volume_)
            # 检查两个 Series 是否相等
            pdt.assert_series_equal(result, expected, check_names=False)
        except AssertionError:
            try:
                # 如果计算结果不相等,则进行错误分析并检查相关性
                corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION)
                self.assertGreater(corr, CORRELATION_THRESHOLD)
            except Exception as ex:
                # 如果出现异常,则进行错误分析
                error_analysis(result, CORRELATION, ex)
        # 重新使用 pandas_ta 计算 MFI 指标
        result = pandas_ta.mfi(self.high, self.low, self.close, self.volume_)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "MFI_14"
        self.assertEqual(result.name, "MFI_14")
    # 测试 NVI 指标计算函数
    def test_nvi(self):
        # 调用 pandas_ta 库的 NVI 函数计算结果
        result = pandas_ta.nvi(self.close, self.volume_)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "NVI_1"
        self.assertEqual(result.name, "NVI_1")
    # 测试 OBV 指标计算函数
    def test_obv(self):
        # 调用 pandas_ta 库的 OBV 函数计算结果,指定不使用 talib
        result = pandas_ta.obv(self.close, self.volume_, talib=False)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "OBV"
        self.assertEqual(result.name, "OBV")
        try:
            # 尝试使用 talib 计算 OBV,并与 pandas_ta 计算结果进行比较
            expected = tal.OBV(self.close, self.volume_)
            # 检查两个 Series 是否相等
            pdt.assert_series_equal(result, expected, check_names=False)
        except AssertionError:
            try:
                # 如果计算结果不相等,则进行错误分析并检查相关性
                corr = pandas_ta.utils.df_error_analysis(result, expected, col=CORRELATION)
                self.assertGreater(corr, CORRELATION_THRESHOLD)
            except Exception as ex:
                # 如果出现异常,则进行错误分析
                error_analysis(result, CORRELATION, ex)
        # 重新使用 pandas_ta 计算 OBV 指标
        result = pandas_ta.obv(self.close, self.volume_)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "OBV"
        self.assertEqual(result.name, "OBV")
    # 测试 PVI 指标计算函数
    def test_pvi(self):
        # 调用 pandas_ta 库的 PVI 函数计算结果
        result = pandas_ta.pvi(self.close, self.volume_)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "PVI_1"
        self.assertEqual(result.name, "PVI_1")
    # 测试 PVOL 指标计算函数
    def test_pvol(self):
        # 调用 pandas_ta 库的 PVOL 函数计算结果
        result = pandas_ta.pvol(self.close, self.volume_)
        # 断言结果类型为 Series
        self.assertIsInstance(result, Series)
        # 断言结果的名称为 "PVOL"
        self.assertEqual(result.name, "PVOL")
    # 测试 Price Volume Ratio (PVR) 指标函数
    def test_pvr(self):
        # 计算 PVR 指标
        result = pandas_ta.pvr(self.close, self.volume_)
        # 确保返回结果为 Series 类型
        self.assertIsInstance(result, Series)
        # 确保返回结果的名称为 "PVR"
        self.assertEqual(result.name, "PVR")
        # 样本指标值来自于 SPY
        self.assertEqual(result[0], 1)
        self.assertEqual(result[1], 3)
        self.assertEqual(result[4], 2)
        self.assertEqual(result[6], 4)
    # 测试 Price Volume Trend (PVT) 指标函数
    def test_pvt(self):
        # 计算 PVT 指标
        result = pandas_ta.pvt(self.close, self.volume_)
        # 确保返回结果为 Series 类型
        self.assertIsInstance(result, Series)
        # 确保返回结果的名称为 "PVT"
        self.assertEqual(result.name, "PVT")
    # 测试 Volume Price (VP) 指标函数
    def test_vp(self):
        # 计算 VP 指标
        result = pandas_ta.vp(self.close, self.volume_)
        # 确保返回结果为 DataFrame 类型
        self.assertIsInstance(result, DataFrame)
        # 确保返回结果的名称为 "VP_10"
        self.assertEqual(result.name, "VP_10")


相关文章
|
9天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
33 2
|
1月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
70 0
|
1月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
57 0
|
1月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
62 0
|
10天前
|
存储 安全 Linux
Golang的GMP调度模型与源码解析
【11月更文挑战第11天】GMP 调度模型是 Go 语言运行时系统的核心部分,用于高效管理和调度大量协程(goroutine)。它通过少量的操作系统线程(M)和逻辑处理器(P)来调度大量的轻量级协程(G),从而实现高性能的并发处理。GMP 模型通过本地队列和全局队列来减少锁竞争,提高调度效率。在 Go 源码中,`runtime.h` 文件定义了关键数据结构,`schedule()` 和 `findrunnable()` 函数实现了核心调度逻辑。通过深入研究 GMP 模型,可以更好地理解 Go 语言的并发机制。
|
22天前
|
消息中间件 缓存 安全
Future与FutureTask源码解析,接口阻塞问题及解决方案
【11月更文挑战第5天】在Java开发中,多线程编程是提高系统并发性能和资源利用率的重要手段。然而,多线程编程也带来了诸如线程安全、死锁、接口阻塞等一系列复杂问题。本文将深度剖析多线程优化技巧、Future与FutureTask的源码、接口阻塞问题及解决方案,并通过具体业务场景和Java代码示例进行实战演示。
39 3
|
1月前
|
存储
让星星⭐月亮告诉你,HashMap的put方法源码解析及其中两种会触发扩容的场景(足够详尽,有问题欢迎指正~)
`HashMap`的`put`方法通过调用`putVal`实现,主要涉及两个场景下的扩容操作:1. 初始化时,链表数组的初始容量设为16,阈值设为12;2. 当存储的元素个数超过阈值时,链表数组的容量和阈值均翻倍。`putVal`方法处理键值对的插入,包括链表和红黑树的转换,确保高效的数据存取。
56 5
|
1月前
|
Java Spring
Spring底层架构源码解析(三)
Spring底层架构源码解析(三)
113 5
|
1月前
|
XML Java 数据格式
Spring底层架构源码解析(二)
Spring底层架构源码解析(二)
|
1月前
|
算法 Java 程序员
Map - TreeSet & TreeMap 源码解析
Map - TreeSet & TreeMap 源码解析
34 0

推荐镜像

更多
下一篇
无影云桌面