图机器学习入门:基本概念介绍

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 图机器学习是机器学习的分支,专注于处理图形结构数据,其中节点代表实体,边表示实体间关系。本文介绍了图的基本概念,如无向图与有向图,以及图的性质,如节点度、邻接矩阵。此外,还讨论了加权图、自循环、多重图、双部图、异构图、平面图和循环图。图在描述数据关系和特征方面具有灵活性,为机器学习算法提供了丰富的结构信息。

图机器学习(Graph Machine Learning,简称Graph ML)是机器学习的一个分支,专注于利用图形结构的数据。在图形结构中,数据以图的形式表示,其中的节点(或顶点)表示实体,边(或链接)表示实体之间的关系。

本篇文章将从基础开始介绍什么是图,我们如何描述和表示它们,以及它们的属性是什么。

图论是在18世纪由欧拉引入的,用来解决著名的柯尼斯堡大桥问题:是否有可能只穿过七座桥中的每座桥一次。

什么是图?如何定义它?

图就是一组相互连接的对象。

一个图有一组结点N和边E, n是顶点的数目,m是边的数目。连接的两个节点被定义为相邻(节点1相邻或邻接4)。当我们称网络的大小N时,通常指的是节点的数量(链路或边的数量通常称为L)。

有向与无向

图可以是无向图或有向图:

无向图:边是无向的,关系是对称的。画边的顺序并不重要。

有向图:边是有向的(也称为有向图),顶点之间的边可以有方向,可以用箭头表示(也称为弧线)。

图的基本性质

对于一个节点,我们可以将节点度(k)定义为与节点相邻的边,对于一个图,我们可以计算无向图的平均度k:

在有向网络中,定义了一个节点的入度(指指向该节点的边)和出度(指离开该节点的边),节点的总度是两者的和。我们称source节点为没有入度的节点,称sink节点为没有出度的节点。

我们可以计算平均度为:

这里的

邻接矩阵是表示图的另一种方式,其中行和列表示图节点,交集表示一个节点的两个节点之间是否存在链接。邻接矩阵的大小是n x n(顶点数)。如果Aij是节点i和j之间的链接,则Aij为1,否则为0,对于无向图,矩阵是对称的。可以看到在矩阵的对角线上没有1意味着没有自环(节点与自身相连)

对于一个节点i计算一个节点的边(或它的度),沿着行或列求和:

无向图中的总边数是每个节点的度之和(也可以是邻接矩阵中的值之和):

因为在无向图中,你要计算两次边(由于邻接矩阵是对称的,要计算两次相同的边),所以除以2

对于有向图,可以表示两个不同的邻接矩阵,一个表示入度,一个表示出度

对于一个节点,总边数是入度和出度之和:

我们计算一个节点的入度和出度以及总边数:

由于线性代数和图论之间存在联系,所以可以对邻接矩阵应用不同的操作。如果转置一个无向图的邻接矩阵,图是没有改变的因为是对称的,但如果转置一个有向图的邻接矩阵,边则进行了方向的转换。

这些矩阵非常是稀疏的,因为理论上一个节点是可以连接到所有其他节点,但这在现实生活中基本上不会发生。当所有节点都与其他节点相连时,我们称之为完全图。完全图通常用于理解图论中的一些复杂问题(连通性例子等)。

图的最大密度是一个完全图中可能关系的总数。实际密度是测量无向非完全图的密度:

理论上来说在社交网络中,每个人都可以连接到每个人,但这并没有发生。所以最终得到一个70亿行和70亿列的邻接矩阵,其中大多数条目为零(因为非常稀疏)。为什么要说这个呢?因为不是所有的算法都能很好地处理稀疏矩阵。

除了邻接矩阵,我们还可以将图表示为一个边的列表:

但是这种方法对于机器学习分析是有问题的,所以就出现了一种常用的方法:邻接表,因为邻接表对大型和稀疏的节点很有用,它允许快速检索节点的邻居。

加权图

图边还可以增加权值,边并不都是相同的,比如在交通图中,为了选择两个节点之间的最佳路径,我们将考虑表示时间或交通的权重。

自循环

图的节点是可以连接到自己的,所以必须在计算总边数时添加自循环

你也可以有一个多图,一个对节点有多条边

多重图

含有平行边的图称为多重图,或者说一个对节点有多条边

上面就是一些常见的图和表示方式,我们来做一个汇总

图的另一个重要参数是连接性(连通性)。每个节点都能被所有其他节点到达吗?连通图是指所有顶点都可以通过一条路径连接起来的图。不连通图是指有两个或多个连通分量的图

最大的隔离的节点子集被称为“孤岛”(island)。知道图是连通的还是不连通的是很重要的,有些算法很难处理不连通的图。

这可以在邻接矩阵中显示,其中不同的组件被写成对角线块(非零元素被限制在平方矩阵中)。我们称连接两个“孤岛”的链接“桥”(bridge)

如果图很小,这种视觉检查很容易,但对于一个大图,检查连通性是非常有挑战的。

双部图

我们上面所看到的图称为单部图,其中只有一种类型的节点和一种类型的关系

双部图是一种将节点划分为两个不相交集合(通常称为 U 和 V)的图。这些集合是独立的,U 集合中的每个节点都与 V 集合中的某个节点相连(每个链接只能连接一个集合中的节点到另一个集合中的节点)。因此,双部图是一种不存在 U-U 连接和 V-V 连接的图。有许多这样的例子:作者到论文(作者位于 U 集合,并且他们与他们撰写的论文即 V 集合相连)、演员(U)和他们参演的电影(V)、用户和产品、食谱和配料等。另一个例子是疾病网络,其中包括一组疾病和一组基因,只有包含已知会导致或影响该疾病的突变的基因才与该疾病相连。另一个例子是匹配,双部图可用于约会应用程序。对于一个有两组节点的双部图(U 有 m 个节点,V 有 n 个节点),可能的边的总数是 m*n,节点的总数是 m + n。

双部图可以折叠成两个单独的网络,U 的投影和 V 的投影。在 U 的投影中,如果两个节点连接到同一个 V 节点,则它们相连(V 投影的原理相同)。

如果需要,我们也可以构建一个三部图。总的来说,你可以拥有超过三种类型的节点,通常我们讲的是 k-部图。这种类型的图扩展了我们对双部图的看法。

异构图

异构图(也称异质图)是一种具有不同类型的节点和边的图。

平面图

如果一幅图可以绘制成没有任何边相交的形式(对于图来说,如果可以以这种方式绘制,它被称为平面表示),则可以将其视为平面图。即使绘制时边相交,图也可以是平面的。看这个例子,这幅图可以重新绘制成平面表示。

为什么知道我们是否可以有平面表示很有用?最常用的一个例子是绘制电路版,要保证电路不会相交。

循环图与非循环图

线路 (walk) 是节点的交替序列(u-v 的线路是从 u 开始并在 v 结束的节点序列)。路径(path)是序列中节点各不相同的线路(u-x-v 是一条路径,但 u-x-u-x-v 是线路但不是路径)。循环图是路径开始和结束于同一节点的图,因为不同的算法都有循环问题(所以有时需要通过切断一些连接将循环图转换为非循环图)。我们可以将前馈神经网络定义为有向无环图(DAG),因为DAG 总是有一个结束点(也称为叶子节点)。

总结

在本文中,我们介绍了什么是图及其主要属性,尽管图看起来很简单,但可以实现无限的变化。图是节点和边的集合;它没有顺序,没有开始也没有结束。我们可以通过它们定义不同类型的概念和数据。图还可以简洁地描述数据的许多属性,并为我们提供关于不同主题之间关系的信息。例如,我们可以为节点和边分配权重和属性。在以后的文章中,我们将讨论如何在这些网络中使用算法(以及如何表示它们)。

https://avoid.overfit.cn/post/ecbeccb28acf4271954d8c3ffe579d6a

作者:Salvatore Raieli

目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
36 2
|
2月前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
76 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
29天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
31 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
23 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
57 2
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
29 4
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
481 1
|
2月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
2月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
下一篇
无影云桌面