基于阿里云向量检索 Milvus 版和 LangChain 快速构建 LLM 问答系统

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。

本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。


免费试用


前提条件


使用限制

  • Milvus实例和PAI(EAS)须在相同地域下。
  • 请确保您的运行环境中已安装Python 3.8或以上版本,以便顺利安装并使用DashScope。


方案架构

该方案架构如下图所示,主要包含以下几个处理过程:

  • 知识库预处理:您可以借助LangChain SDK对文本进行分割,作为Embedding模型的输入数据。
  • 知识库存储:选定的Embedding模型(DashScope)负责将输入文本转换为向量,并将这些向量存入阿里云Milvus的向量数据库中。
  • 向量相似性检索:Embedding模型处理用户的查询输入,并将其向量化。随后,利用阿里云Milvus的索引功能来识别出相应的Retrieved文档集。
  • RAG(Retrieval-Augmented Generation)对话验证:您使用LangChain SDK,并将相似性检索的结果作为上下文,将问题导入到LLM模型(本例中用的是阿里云PAI EAS),以产生最终的回答。此外,结果可以通过将问题直接查询LLM模型得到的答案进行核实。


操作流程

步骤一:部署对话模型推理服务

  1. 进入模型在线服务页面。
  1. 登录PAI控制台
  2. 在左侧导航栏单击工作空间列表,在工作空间列表页面中单击待操作的工作空间名称,进入对应工作空间内。
  3. 在工作空间页面的左侧导航栏选择模型部署>模型在线服务(EAS),进入模型在线服务(EAS)页面。
  1. PAI-EAS模型在线服务页面,单击部署服务
  2. 部署服务页面,选择大模型RAG对话系统
  3. 部署大模型RAG对话系统页面,配置以下关键参数,其余参数可使用默认配置,更多参数详情请参见大模型RAG对话系统


参数

描述

基本信息

服务名称

您可以自定义。

模型来源

使用默认的开源公共模型

资源配置

模型类别

通常选择通义千问7B。例如,Qwen1.5-7b。

资源配置选择

按需选择GPU资源配置。例如,ml.gu7i.c16m30.1-gu30。

向量检索库设置

版本类型

选择Milvus

数据库文件夹名称

您在Milvus中自定义的Collection名称。

访问地址

Milvus实例的内网地址。您可以在Milvus实例的实例详情页面查看。

代理端口

Milvus实例的Proxy Port。您可以在Milvus实例的实例详情页面查看。

账号

配置为root。

密码

配置为创建Milvus实例时,您自定义的root用户的密码。

Collection删除

是否删除已存在的Collection。取值如下:

  • True:删除同名的Collection,再创建新的Collection。如果不存在同名Collection,则直接进行创建。
  • False:保留现有的同名Collection,新加入的数据将追加到该Collection中。

专有网络配置

VPC

创建Milvus实例选择时的VPC、交换机和安全组。您可以在Milvus实例的实例详情页面查看。

交换机

安全组名称


  1. 单击部署
    服务状态变为运行中时,表示服务部署成功。


  1. 获取VPC地址调用的服务访问地址和Token。
  1. 单击服务名称,进入服务详情页面。
  2. 基本信息区域,单击查看调用信息
  3. 调用信息对话框的VPC地址调用页签,获取服务访问地址和Token,并保存到本地。


步骤二:创建并执行Python文件

  1. (可选)在ECS控制台创建并启动一个开通公网的ECS实例,用于运行Python文件,详情请参见通过控制台使用ECS实例(快捷版)
    您也可以在本地机器执行Python文件,具体请根据您的实际情况做出合适的选择。


  1. 执行以下命令,安装相关依赖库。
pip3 install pymilvus langchain dashscope beautifulsoup4


  1. 执行以下命令,创建milvusr-llm.py文件。
vim milvusr-llm.py


milvusr-llm.py文件内容如下所示。

from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores.milvus import Milvus
from langchain.schema.runnable import RunnablePassthrough
from langchain.prompts import PromptTemplate
from langchain_community.embeddings import DashScopeEmbeddings
from langchain_community.llms.pai_eas_endpoint import PaiEasEndpoint

# 设置Milvus Collection名称。
COLLECTION_NAME = 'doc_qa_db'

# 设置向量维度。
DIMENSION = 768

loader = WebBaseLoader([
    'https://milvus.io/docs/overview.md',
    'https://milvus.io/docs/release_notes.md',
    'https://milvus.io/docs/architecture_overview.md',
    'https://milvus.io/docs/four_layers.md',
    'https://milvus.io/docs/main_components.md',
    'https://milvus.io/docs/data_processing.md',
    'https://milvus.io/docs/bitset.md',
    'https://milvus.io/docs/boolean.md',
    'https://milvus.io/docs/consistency.md',
    'https://milvus.io/docs/coordinator_ha.md',
    'https://milvus.io/docs/replica.md',
    'https://milvus.io/docs/knowhere.md',
    'https://milvus.io/docs/schema.md',
    'https://milvus.io/docs/dynamic_schema.md',
    'https://milvus.io/docs/json_data_type.md',
    'https://milvus.io/docs/metric.md',
    'https://milvus.io/docs/partition_key.md',
    'https://milvus.io/docs/multi_tenancy.md',
    'https://milvus.io/docs/timestamp.md',
    'https://milvus.io/docs/users_and_roles.md',
    'https://milvus.io/docs/index.md',
    'https://milvus.io/docs/disk_index.md',
    'https://milvus.io/docs/scalar_index.md',
    'https://milvus.io/docs/performance_faq.md',
    'https://milvus.io/docs/product_faq.md',
    'https://milvus.io/docs/operational_faq.md',
    'https://milvus.io/docs/troubleshooting.md',
])

docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=0)

# 使用LangChain将输入文档安照chunk_size切分
all_splits = text_splitter.split_documents(docs)

# 设置embedding模型为DashScope(可以替换成自己模型)。

embeddings = DashScopeEmbeddings(
    model="text-xxxx", dashscope_api_key="your_api_key"
)

# 创建connection,host为阿里云Milvus的访问域名。

connection_args = {"host": "c-xxxx.milvus.aliyuncs.com", "port": "19530", "user": "your_user", "password": "your_password"}
# 创建Collection
vector_store = Milvus(
    embedding_function=embeddings,
    connection_args=connection_args,
    collection_name=COLLECTION_NAME,
    drop_old=True,
).from_documents(
    all_splits,
    embedding=embeddings,
    collection_name=COLLECTION_NAME,
    connection_args=connection_args,
)

# 利用Milvus向量数据库进行相似性检索。

query = "What are the main components of Milvus?"
docs = vector_store.similarity_search(query)
print(len(docs))

# 声明LLM 模型为PAI EAS(可以替换成自己模型)。

llm = PaiEasEndpoint(
    eas_service_url="your_pai_eas_url",
    eas_service_token="your_token",
)

# 将上述相似性检索的结果作为retriever,提出问题输入到LLM之后,获取检索增强之后的回答。

retriever = vector_store.as_retriever()

template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Use three sentences maximum and keep the answer as concise as possible.
Always say "thanks for asking!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
rag_prompt = PromptTemplate.from_template(template)

rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | rag_prompt
    | llm
)

print(rag_chain.invoke("Explain IVF_FLAT in Milvus."))


以下参数请根据实际环境替换。

参数

说明

COLLECTION_NAME

设置Milvus Collection名称,您可以自定义。

model

模型服务灵积的模型名称。您可以在模型服务灵积控制台的总览页面查看。

本文示例使用的设置Embedding模型为DashScope,您也可以替换成您实际使用的模型。

dashscope_api_key

模型服务灵积的密钥。您可以在模型服务灵积控制台的API-KEY管理页面查看。

connection_args

  • "host":Milvus实例的公网地址。您可以在Milvus实例的实例详情页面查看。
  • "port":Milvus实例的Proxy Port。您可以在Milvus实例的实例详情页面查看。
  • "user":配置为创建Milvus实例时,您自定义的用户名。
  • "password":配置为创建Milvus实例时,您自定义用户的密码。

eas_service_url

配置为步骤1中获取的服务访问地址。本文示例声明LLM模型为PAI(EAS),您也可以替换成您实际使用的模型。

eas_service_token

配置为步骤1中获取的服务Token。


  1. 执行以下命令运行文件。
python3 milvusr-llm.py


返回如下类似信息。

4
IVF_FLAT is a type of index in Milvus that divides vector data into nlist cluster units and compares distances between the target input vector and the center of each cluster. It uses a smaller number of clusters than IVF_FLAT, which means it may have slightly higher query time but also requires less memory. The encoded data stored in each unit is consistent with the original data.



向量检索 Milvus 版用户交流钉钉群

1712734996586.png

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
25天前
|
存储 人工智能 自然语言处理
LangChain让LLM带上记忆
最近两年,我们见识了“百模大战”,领略到了大型语言模型(LLM)的风采,但它们也存在一个显著的缺陷:没有记忆。在对话中,无法记住上下文的 LLM 常常会让用户感到困扰。本文探讨如何利用 LangChain,快速为 LLM 添加记忆能力,提升对话体验。
49631 7
LangChain让LLM带上记忆
|
10天前
|
存储 人工智能 机器人
LangChain结合LLM做私有化文档搜索
我们知道LLM(大语言模型)的底模是基于已经过期的公开数据训练出来的,对于新的知识或者私有化的数据LLM一般无法作答,此时LLM会出现“幻觉”。针对“幻觉”问题,一般的解决方案是采用RAG做检索增强。
LangChain结合LLM做私有化文档搜索
|
1月前
|
运维 监控 搜索推荐
客户案例 | 阿里云向量检索 Milvus 版在识货电商检索场景的应用与实践
本文分享了阿里云向量检索 Milvus 版在识货电商检索场景的应用与实践。阿里云的 Milvus 服务以其性能稳定和功能多样化的向量检索能力,为识货团队在电商领域的向量检索场景中搭建业务系统提供了强有力的支持。
|
2月前
|
机器学习/深度学习 人工智能
【LangChain系列】第九篇:LLM 应用评估简介及实践
【5月更文挑战第23天】本文探讨了如何评估复杂且精密的语言模型(LLMs)应用。通过创建QA应用程序,如使用GPT-3.5-Turbo模型,然后构建测试数据,包括手动创建和使用LLM生成示例。接着,通过手动评估、调试及LLM辅助评估来衡量性能。手动评估借助langchain.debug工具提供执行细节,而QAEvalChain则利用LLM的语义理解能力进行评分。这些方法有助于优化和提升LLM应用程序的准确性和效率。
339 8
|
2月前
|
物联网 测试技术 API
LLM 大模型学习必知必会系列(九):Agent微调最佳实践,用消费级显卡训练属于自己的Agent!
LLM 大模型学习必知必会系列(九):Agent微调最佳实践,用消费级显卡训练属于自己的Agent!
LLM 大模型学习必知必会系列(九):Agent微调最佳实践,用消费级显卡训练属于自己的Agent!
|
23天前
|
存储 人工智能 安全
使用‘消除’技术绕过LLM的安全机制,不用训练就可以创建自己的nsfw模型
本文探讨了一种名为“abliteration”的技术,该技术能够在不重新训练大型语言模型(LLM)的情况下移除其内置的安全审查机制。通常,LLM在接收到潜在有害输入时会拒绝执行,但这一安全特性牺牲了模型的灵活性。通过对模型残差流的分析,研究人员发现可以识别并消除导致拒绝行为的特定方向,从而允许模型响应所有类型的提示。
268 1
|
15天前
|
人工智能 自然语言处理 算法
LLM主流开源代表模型(二)
随着ChatGPT迅速火爆,引发了大模型的时代变革,国内外各大公司也快速跟进生成式AI市场,近百款大模型发布及应用。
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
LLM主流开源代表模型(一)
随着ChatGPT迅速火爆,引发了大模型的时代变革,国内外各大公司也快速跟进生成式AI市场,近百款大模型发布及应用。
|
2月前
|
人工智能 物联网 API
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
LLM 大模型学习必知必会系列(十三):基于SWIFT的VLLM推理加速与部署实战
|
2月前
|
机器学习/深度学习 缓存 算法
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]
LLM 大模型学习必知必会系列(十二):VLLM性能飞跃部署实践:从推理加速到高效部署的全方位优化[更多内容:XInference/FastChat等框架]