【Linux】对信号产生的内核级理解

简介: 【Linux】对信号产生的内核级理解

一、键盘产生信号

      键盘产生信号这里就要涉及一个重要的概念了,叫硬件中断。我这里会粗粒度地说一下键盘产生信号,以及信号被上层软件读到的过程,只是说一下我自己的理解。

1.1、硬件中断

       硬件中断是计算机中的一种机制,它允许硬件设备在需要时向中央处理器(CPU)发送信号,以请求其关注并处理某些事件或条件。当硬件设备需要CPU的注意时,它会生成一个中断信号,该信号随后被送到CPU的中断控制器。中断控制器负责管理这些信号,并确定哪个中断需要优先处理

       一旦CPU接收到中断信号,它会暂停当前正在执行的程序保存当前的状态,如程序计数器、寄存器值等,然后跳转到特定的中断处理程序或中断服务例程来响应这个中断。中断处理程序会执行必要的操作来处理该中断,这可能包括读取硬件的状态、更新数据、发送响应等。处理完中断后,CPU会恢复之前保存的状态,并继续执行原来的程序。

1.2、键盘产生信号并被读取的过程

       在CPU上是有各个针脚的,每个针脚有对应的编号。针脚在主板上是可以和键盘进行连接的。当我们在键盘中输入命令或数据时,CPU上对应的针脚会触发高电平,CPU此时就要发生硬件中断,将CPU中正在运行的进程的数据做保存,然后去响应这个中断。CPU有寄存器能记录是几号(我觉得可以理解成数组下标)针脚触发了高电平。然后CPU就可以根据寄存器中的数字在中断向量表中找到对应数组下标中的读取键盘数据的方法。操作系统就去读取键盘上输入的数据。然后操作系统会判定键盘文件中用户输入的数据是命令还是普通的数据,如果是普通数据操作系统就直接将将数据写到键盘文件的缓冲区中,让对应的进程读到,如果是命令,操作系统就会解释成信号发送给对应的进程。

       信号发送给进程后进程PCB中其实是用一个32位的整数来保存收到的信号的,也就是说,信号是以位图的形式被保存起来的。前面我们也说过,操作系统中异步发送的信号一共有31个:

      所以用一个32位的整数就可以保存在进程的PCB中。向进程发送信号的本质是写入信号,将保存信号的位图对应的比特位由零置一,一个信号就算被发送给进程了因为发送信号要修改PCB内核数据结构的内容,所以无论产生信号的方式有多少种,最终都是由操作系统将信号写入进程PCB中的

二、出异常产生信号

2.1、除0

       在介绍出异常产生信号之前,首先要先介绍一下CPU中的部分常见寄存器,因为出异常产生信号往往都是跟CPU中的寄存器有关的。

通用寄存器

  • EAX, EBX, ECX, EDX: 32位通用寄存器,用于各种算术运算、数据操作以及地址计算。

变址寄存器和指针寄存器

  • ESI, EDI: 32位变址寄存器,常用于数组访问和字符串操作。
  • ESP, EBP: 32位堆栈指针和基指针寄存器,用于管理堆栈和访问堆栈上的数据。

指令指针寄存器

  • EIP: 32位指令指针寄存器,指向CPU下一条要执行的指令的地址。

标志寄存器

  • EFlags: 32位标志寄存器,存储关于上一条指令执行结果的状态信息,如进位、溢出、符号等。

       当我们的程序出现除0错误时,CPU中的标志寄存器(EFlags)中的溢出标志位被设置为1,CPU识别到标志寄存器中的溢出标志位被设置为1,就会转而通知操作系统,操作系统就会向正在执行的进程发送SIGFPE(8号信号)直接终止进程。

2.2、野指针

CPU中还有两个寄存器:

  1. CR2寄存器功能:CR2存放发生页错误时的虚拟地址。当CPU尝试访问一个未映射或不可访问的虚拟地址时,会触发页错误,此时CR2会保存导致错误的虚拟地址。
  2. CR3寄存器功能:CR3用于存放最高级页目录地址(物理地址)。在分页机制中,页目录是存储页面表物理地址的数据结构,而CR3则指向这个页目录的基地址。

       假设我们要修改空指针里的内容,将保存在eax寄存器中的空指针的地址(虚拟地址)和CR3寄存器中的基地址到MMU中进行映射,发现页表中根本就没有空指针的虚拟地址到物理地址之间的转换关系(或者是其它情况,有转换关系但是页表项的权限为只读权限但你却要做修改),然后将转换失败的虚拟地址存放到CR2寄存器中。CPU转而通知操作系统CR2中存在发生页错误的虚拟地址,操作系统就直接向对应进程发送SIGSEGV(11号信号),终止对应进程。

三、总结

       出现异常并发送信号一定是硬件和软件配合的结果。无论产生信号的方式有多少种,最终都是由操作系统将信号写入进程PCB中的

相关文章
|
5天前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
26 6
|
3天前
|
缓存 资源调度 安全
深入探索Linux操作系统的心脏——内核配置与优化####
本文作为一篇技术性深度解析文章,旨在引领读者踏上一场揭秘Linux内核配置与优化的奇妙之旅。不同于传统的摘要概述,本文将以实战为导向,直接跳入核心内容,探讨如何通过精细调整内核参数来提升系统性能、增强安全性及实现资源高效利用。从基础概念到高级技巧,逐步揭示那些隐藏在命令行背后的强大功能,为系统管理员和高级用户打开一扇通往极致性能与定制化体验的大门。 --- ###
19 9
|
2天前
|
缓存 负载均衡 Linux
深入理解Linux内核调度器
本文探讨了Linux操作系统核心组件之一——内核调度器的工作原理和设计哲学。不同于常规的技术文章,本摘要旨在提供一种全新的视角来审视Linux内核的调度机制,通过分析其对系统性能的影响以及在多核处理器环境下的表现,揭示调度器如何平衡公平性和效率。文章进一步讨论了完全公平调度器(CFS)的设计细节,包括它如何处理不同优先级的任务、如何进行负载均衡以及它是如何适应现代多核架构的挑战。此外,本文还简要概述了Linux调度器的未来发展方向,包括对实时任务支持的改进和对异构计算环境的适应性。
18 6
|
3天前
|
缓存 Linux 开发者
Linux内核中的并发控制机制:深入理解与应用####
【10月更文挑战第21天】 本文旨在为读者提供一个全面的指南,探讨Linux操作系统中用于实现多线程和进程间同步的关键技术——并发控制机制。通过剖析互斥锁、自旋锁、读写锁等核心概念及其在实际场景中的应用,本文将帮助开发者更好地理解和运用这些工具来构建高效且稳定的应用程序。 ####
17 5
|
1天前
|
算法 Linux 调度
深入理解Linux内核调度器:从基础到优化####
本文旨在通过剖析Linux操作系统的心脏——内核调度器,为读者揭开其高效管理CPU资源的神秘面纱。不同于传统的摘要概述,本文将直接以一段精简代码片段作为引子,展示一个简化版的任务调度逻辑,随后逐步深入,详细探讨Linux内核调度器的工作原理、关键数据结构、调度算法演变以及性能调优策略,旨在为开发者与系统管理员提供一份实用的技术指南。 ####
14 4
|
3天前
|
算法 Unix Linux
深入理解Linux内核调度器:原理与优化
本文探讨了Linux操作系统的心脏——内核调度器(Scheduler)的工作原理,以及如何通过参数调整和代码优化来提高系统性能。不同于常规摘要仅概述内容,本摘要旨在激发读者对Linux内核调度机制深层次运作的兴趣,并简要介绍文章将覆盖的关键话题,如调度算法、实时性增强及节能策略等。
|
4天前
|
存储 监控 安全
Linux内核调优的艺术:从基础到高级###
本文深入探讨了Linux操作系统的心脏——内核的调优方法。文章首先概述了Linux内核的基本结构与工作原理,随后详细阐述了内核调优的重要性及基本原则。通过具体的参数调整示例(如sysctl、/proc/sys目录中的设置),文章展示了如何根据实际应用场景优化系统性能,包括提升CPU利用率、内存管理效率以及I/O性能等关键方面。最后,介绍了一些高级工具和技术,如perf、eBPF和SystemTap,用于更深层次的性能分析和问题定位。本文旨在为系统管理员和高级用户提供实用的内核调优策略,以最大化Linux系统的效率和稳定性。 ###
|
3天前
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。
|
3天前
|
缓存 运维 网络协议
深入Linux内核架构:操作系统的核心奥秘
深入Linux内核架构:操作系统的核心奥秘
15 2
|
5天前
|
监控 网络协议 算法
Linux内核优化:提升系统性能与稳定性的策略####
本文深入探讨了Linux操作系统内核的优化策略,旨在通过一系列技术手段和最佳实践,显著提升系统的性能、响应速度及稳定性。文章首先概述了Linux内核的核心组件及其在系统中的作用,随后详细阐述了内存管理、进程调度、文件系统优化、网络栈调整及并发控制等关键领域的优化方法。通过实际案例分析,展示了这些优化措施如何有效减少延迟、提高吞吐量,并增强系统的整体健壮性。最终,文章强调了持续监控、定期更新及合理配置对于维持Linux系统长期高效运行的重要性。 ####