【大模型】使用哪些资源来了解 LLM 的最新进展?

简介: 【5月更文挑战第9天】【大模型】使用哪些资源来了解 LLM 的最新进展?

image.png

资源介绍

学术期刊和会议

学术期刊和会议是了解LLM最新进展的重要资源之一。在人工智能领域,有许多权威的期刊和会议,如《自然语言处理》(Natural Language Processing)、《计算机视觉》(Computer Vision)、《人工智能》(Artificial Intelligence)等。这些期刊和会议定期发布关于LLM的最新研究成果和技术进展,包括理论研究、技术方法、应用案例等。

预印本和技术博客

预印本和技术博客是获取LLM最新进展的另一重要途径。许多研究人员和机构会在预印本平台上发布他们的研究成果和技术进展,如arXiv、PubMed、OpenAI等。这些预印本提供了及时的、未经审稿的研究成果,可以帮助工程师了解LLM领域的最新动态。此外,一些知名的技术博客,如OpenAI的官方博客、DeepMind的官方博客等,也会定期发布关于LLM的技术文章和案例分享。

学术论坛和社区

学术论坛和社区是交流和讨论LLM最新进展的重要平台之一。在互联网上有许多活跃的学术论坛和社区,如Reddit的机器学习专栏、Stack Exchange的人工智能专栏、GitHub的人工智能项目库等。这些论坛和社区汇集了全球范围内的研究人员、工程师和爱好者,可以通过在这些平台上参与讨论和交流,及时了解LLM领域的最新进展和热点话题。

学术搜索引擎

学术搜索引擎是查找LLM相关文献和资源的重要工具之一。常用的学术搜索引擎包括Google Scholar、Microsoft Academic、Semantic Scholar等。这些搜索引擎可以帮助工程师快速找到与LLM相关的学术论文、技术报告、专利文献等,提供了丰富的文献资源和检索工具,方便工程师进行深入的研究和分析。

社交媒体和订阅服务

社交媒体和订阅服务也是获取LLM最新进展的重要途径之一。许多研究人员、学术机构和技术公司都会在社交媒体上发布他们的研究成果和技术动态,如Twitter、LinkedIn、Facebook等。此外,一些专业的订阅服务,如Medium的人工智能专栏、Substack的技术博客、Newsletter的订阅服务等,也可以帮助工程师及时了解LLM领域的最新进展和观点。

结语

通过以上介绍的资源,工程师可以及时了解LLM领域的最新进展,从理论研究到实际应用,从基础算法到前沿技术,从学术论文到技术博客,各种类型的资源都能够帮助工程师深入了解LLM的发展动态和技术趋势,为自己的研究和工作提供有益的参考和指导。

相关文章
|
4月前
|
存储 人工智能 云计算
挑战杯专属支持资源|阿里云-AI大模型算力及实验资源丨云工开物
阿里云发起的“云工开物”高校支持计划,助力AI时代人才培养与科研创新。为“挑战杯”参赛选手提供专属算力资源、AI模型平台及学习训练资源,包括300元免费算力券、百炼大模型服务、PAI-ArtLab设计平台等,帮助学生快速掌握AI技能并构建优秀作品,推动产学研融合发展。访问链接领取资源:https://university.aliyun.com/action/tiaozhanbei。
|
6月前
|
机器学习/深度学习 存储 缓存
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
大型语言模型(LLM)的推理效率是AI领域的重要挑战。本文聚焦KV缓存技术,通过存储复用注意力机制中的Key和Value张量,减少冗余计算,显著提升推理效率。文章从理论到实践,详细解析KV缓存原理、实现与性能优势,并提供PyTorch代码示例。实验表明,该技术在长序列生成中可将推理时间降低近60%,为大模型优化提供了有效方案。
960 15
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
|
3月前
|
弹性计算 关系型数据库 API
自建Dify平台与PAI EAS LLM大模型
本文介绍了如何使用阿里云计算巢(ECS)一键部署Dify,并在PAI EAS上搭建LLM、Embedding及重排序模型,实现知识库支持的RAG应用。内容涵盖Dify初始化、PAI模型部署、API配置及RAG知识检索设置。
自建Dify平台与PAI EAS LLM大模型
|
21天前
|
存储 缓存 负载均衡
LLM推理成本直降60%:PD分离在大模型商业化中的关键价值
在LLM推理中,Prefill(计算密集)与Decode(访存密集)阶段特性不同,分离计算可提升资源利用率。本文详解vLLM框架中的PD分离实现及局限,并分析Dynamo、Mooncake、SGLang等主流方案,探讨KV缓存、传输机制与调度策略,助力LLM推理优化。建议点赞收藏,便于后续查阅。
423 1
|
3月前
|
机器学习/深度学习 人工智能 编解码
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
AI-Compass LLM合集-多模态模块:30+前沿大模型技术生态,涵盖GPT-4V、Gemini Vision等国际领先与通义千问VL等国产优秀模型
|
3月前
|
人工智能 自然语言处理 数据可视化
AI-Compass LLM评估框架:CLiB中文大模型榜单、OpenCompass司南、RAGas、微软Presidio等构建多维度全覆盖评估生态系统
AI-Compass LLM评估框架:CLiB中文大模型榜单、OpenCompass司南、RAGas、微软Presidio等构建多维度全覆盖评估生态系统
 AI-Compass LLM评估框架:CLiB中文大模型榜单、OpenCompass司南、RAGas、微软Presidio等构建多维度全覆盖评估生态系统
|
6月前
|
缓存 人工智能 架构师
释放数据潜力:利用 MCP 资源让大模型读懂你的服务器
MCP(Model Control Protocol)资源系统是将服务器数据暴露给客户端的核心机制,支持文本和二进制两种类型资源。资源通过唯一URI标识,客户端可通过资源列表或模板发现资源,并使用`resources/read`接口读取内容。MCP还支持资源实时更新通知及订阅机制,确保动态数据的及时性。实现时需遵循最佳实践,如清晰命名、设置MIME类型和缓存策略,同时注重安全性,包括访问控制、路径清理和速率限制等。提供的示例代码展示了如何用JavaScript和Python实现资源支持。
701 80
|
4月前
|
存储 分布式计算 API
基于PAI-FeatureStore的LLM embedding功能,结合通义千问大模型,可通过以下链路实现对物品标题、内容字段的离线和在线特征管理。
本文介绍了基于PAI-FeatureStore和通义千问大模型的LLM embedding功能,实现物品标题、内容字段的离线与在线特征管理。核心内容包括:1) 离线特征生产(MaxCompute批处理),通过API生成Embedding并存储;2) 在线特征同步,实时接入数据并更新Embedding至在线存储;3) Python SDK代码示例解析;4) 关键步骤说明,如客户端初始化、参数配置等;5) 最佳实践,涵盖性能优化、数据一致性及异常处理;6) 应用场景示例,如推荐系统和搜索排序。该方案支持端到端文本特征管理,满足多种语义理解需求。
130 1
|
8月前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
5304 80
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
4月前
|
机器学习/深度学习 自然语言处理 算法
万字长文详解|DLRover LLM Agent:大模型驱动的高效集群资源调优
本文介绍了DLRover LLM Agent,展示了基于 LLM 上下文学习能力的优化算法设计理念以及在DLRover 资源调优上的应用方法和效果。

热门文章

最新文章