xenomai内核解析--xenomai与普通linux进程之间通讯XDDP(二)--实时与非实时关联(bind流程)

简介: 本文是关于Xenomai实时端socket的bind操作解析。

版权声明:本文为本文为博主原创文章,转载请注明出处。如有问题,欢迎指正。博客地址:https://www.cnblogs.com/wsg1100/

1.概述

上篇文章介绍了实时端socket创建和配置的流程,本篇文章来看bind操作,实时端与非实时端是如何关联起来的?

XDDP通讯的底层设备为xnpipe,是linux任务与xenomai任务通讯的核心,在linux看来是一个字符设备,xnpipe在xenomai内核初始化过程初始化,并完成linux端xnipipe字符设备注册。

rtipc-arch

bind的主要操作就是根据socket配置,分配资源,如指定通讯过程中分配释放的内存池(xnheap)、缓冲区大小等,并根据端口号,分配对应的xnpipe设备,并将rtdm_fd与xnipipe设备通过数组关联(用次设备号作为数组下标,端口号即次设备号)。下面来看详细过程。

 2. 解析bind函数

与前面函数一样,用户空间实时任务对socket调用bind()函数,先进入实时库licobalt,再由实时库libcobalt来发起实时内核系统调用:

saddr.sipc_family = AF_RTIPC;
saddr.sipc_port = XDDP_PORT;
ret = bind(s, (struct sockaddr *)&saddr, sizeof(saddr));
/*lib\cobalt\rtdm.c*/
COBALT_IMPL(int, bind, (int fd, const struct sockaddr *my_addr, socklen_t addrlen))
{
   
   
.....
    ret = do_ioctl(fd, _RTIOC_BIND, &args);
    if (ret != -EBADF && ret != -ENOSYS)
        return set_errno(ret);

    return __STD(bind(fd, my_addr, addrlen));
}
static int do_ioctl(int fd, unsigned int request, void *arg)
{
   
   
....
    ret = XENOMAI_SYSCALL3(sc_cobalt_ioctl,    fd, request, arg);
....
    return ret;
}

进入系统调用后执行__xddp_ioctl().

static int __xddp_ioctl(struct rtdm_fd *fd,
            unsigned int request, void *arg)
{
   
   
    struct rtipc_private *priv = rtdm_fd_to_private(fd);
    struct sockaddr_ipc saddr, *saddrp = &saddr;
    struct xddp_socket *sk = priv->state;
    int ret = 0;

    switch (request) {
   
   
    ......
    COMPAT_CASE(_RTIOC_BIND):/*bind操作*/
        ret = rtipc_get_sockaddr(fd, &saddrp, arg);
        .......
        ret = __xddp_bind_socket(priv, saddrp);
        break;
    ......
    }
    return ret;
}

前面文章看了__xddp_ioctl()中的COMPAT_CASE(_RTIOC_SETSOCKOPT)分支,现在来看COMPAT_CASE(_RTIOC_BIND),__xddp_bind_socket().

static int __xddp_bind_socket(struct rtipc_private *priv,
                  struct sockaddr_ipc *sa)
{
   
   
    struct xddp_socket *sk = priv->state;
    struct xnpipe_operations ops;
    rtdm_lockctx_t s;
    size_t poolsz;
    void *poolmem;
    ...../*参数检查*/

    poolsz = sk->poolsz;
    if (poolsz > 0) {
   
   
        poolsz = xnheap_rounded_size(poolsz);//对齐
        poolsz += xnheap_rounded_size(sk->reqbufsz);
        poolmem = xnheap_vmalloc(poolsz); //ZONE_NORMAL中分配,分配后使用xnhead方式进行管理
        ......

        ret = xnheap_init(&sk->privpool, poolmem, poolsz);/*初始化内存区*/
        .......
        sk->bufpool = &sk->privpool;
    } else
        sk->bufpool = &cobalt_heap;

    if (sk->reqbufsz > 0) {
   
   
        sk->buffer = xnheap_alloc(sk->bufpool, sk->reqbufsz);/*从bufpool 分配sk->buffer*/
        ......
        sk->curbufsz = sk->reqbufsz;
    }
    /*__xddp_bind_socket()剩余部分*/
    .......
}

该函数中先检查相关参数的合法性,然后配置xddp本地内存池privpool,上篇文章setsocketopt()只是设置了内存池的大小poolsz,但是还没有真正分配内存,现在开始分配内存,先将内存大小向上页对齐(PAGE_SIZE为4K),由于xenomai内存池管理缘故,每个内存池至少为(2*PAGE_SIZE);然后看看poolsz是否够分配reqbufsz,不够的话向reqbufsz对齐。

大小确定后正式调用linux接口分配,从ZONE_NORMAL中分配,分配后调用xnheap_init()将该内存初始化(具体流程参见文章xenomai内核解析--实时内存管理--xnheap)。然后将bufpool指向该内存池。接着分配数据缓冲区bufpool,从bufpool指向的内存池中分配缓冲区内存。

pripool

上面大部分都是关于缓冲区与内存池的设置,到此还没有看到关于数据真正传输控制的东西,__xddp_bind_socket()接着要完成bind相关工作:

static int __xddp_bind_socket(struct rtipc_private *priv,
                  struct sockaddr_ipc *sa)
{
   
       
    struct xnpipe_operations ops;
    ......
     /*接上部分*/
    sk->fd = rtdm_private_to_fd(priv);
    ops.output = &__xddp_output_handler;
    ops.input = &__xddp_input_handler;
    ops.alloc_ibuf = &__xddp_alloc_handler;
    ops.free_ibuf = &__xddp_free_handler;
    ops.free_obuf = &__xddp_free_handler;
    ops.release = &__xddp_release_handler;

    ret = xnpipe_connect(sa->sipc_port, &ops, sk);//将SK与OPS与sipc_port联系起来,绑定端口
    .......

    sk->minor = ret;
    sa->sipc_port = ret;
    sk->name = *sa;
    /*剩余部分*/
}

先取出rtdm_fd,设置struct xnpipe_operations,struct xnpipe_operations中的ops为xddp通讯过程中buf分配释放的函数;

struct xnpipe_operations {
   
   
    void (*output)(struct xnpipe_mh *mh, void *xstate);
    int (*input)(struct xnpipe_mh *mh, int retval, void *xstate);
    void *(*alloc_ibuf)(size_t size, void *xstate);
    void (*free_ibuf)(void *buf, void *xstate);
    void (*free_obuf)(void *buf, void *xstate);
    void (*release)(void *xstate);
};

谁会用到这些buf?xnpipe,xnpipe管理收发的数据包时需要动态管理buf,在具体通讯的时候,我们要为每一个数据包在内核空间临时申请一块内存来存放数据,这块内存的申请释放要足够快,而且不能影响实时性,所以得从xnheap中申请,也就是前面xddp-socket->bufpool指向的内存池,对每块内存的分配释放就是由这个回调函数来完成。需要注意的是,linux端读写数据的时候也是从xddp-socket->bufpool中分配释放内存,这会在后面文章中看到;

还有一些场合,执行内核用户线程需要在数据到来或发送的时候添加一些hook,这通过output()/input()来设置monitor函数。

接下来调用xnpipe_connect(sa->sipc_port, &ops, sk)将xddp_socket与linux端的xnipipe函数关联起来,由于xnpipe不是动态分配的,内核配置时确定xnpipe的数量,以数组的形式,这样确保了确定性,linux启动时,xenomai内核初始化过程中就已将xnpipe初始化。

2.1 xnpipe介绍

XNPIPE是xenomai内核提供的通讯层,是linux任务与xenomai任务通讯的核心。每个xddp socket对应一个XNPIPE,XNPIPE的个数XNPIPE_NDEVS在内核编译时配置,内核默认配置为32个XNPIPE对象保存在全局数组xnpipe_states[XNPIPE_NDEVS]中,全局bitmap xnpipe_bitmap中记录着XNPIPE对象分配情况,xnpipe_states[]内的xpipe对象在xenomai初始化时初始化,在linux VFS下生成对应的设备节点,后一节说明。

xnpipe-bitmap

内核xnpipe数量配置menuconfig 项如下:

[*] Xenomai/cobalt --->

​ Sizes and static limits --->

​ (32) Number of pipe devices

XNPIPE对象结构struct xnpipe_state如下。

struct xnpipe_state {
   
   
    struct list_head slink;    /* Link on sleep queue */
    struct list_head alink;    /* Link on async queue */

    struct list_head inq;        /* in/out是从实时端看的类似USB的端口*/
    int nrinq;             /*链表节点数,代指消息个数*/
    struct list_head outq;        /* From kernel to user-space */
    int nroutq;
    struct xnsynch synchbase;/*同步*/
    struct xnpipe_operations ops;/*执行一些hook函数,如释放消息节点的内存,有消息时执行monitor函数等*/
    void *xstate;        /* xddp是指向 xddp_socket */

    /* Linux kernel part */
    unsigned long status;/*状态标识*/
    struct fasync_struct *asyncq;
    wait_queue_head_t readq;    /* linux端读等待队列*/
    wait_queue_head_t syncq;    /*linux端写同步等待队列*/
    int wcount;                  /* 这个设备节点的进程数量*/
    size_t ionrd;             /*缓冲包数据长度*/
};

最为linux任务与xenomai任务通讯的中间人,struct xnpipe_state成员分为两个部分,首先看xenomai相关成员

  • slink、alink 链接到xnpipe睡眠队列 、async 队列。
  • inq 实时端接收数据包队列,其中的in是相对xenomai端来说的,每个链表节点表示一个数据包,包个数用成员nrinq记录。
  • outq 实时端发送数据包队列,其中的out是相对xenomai端来说的,每个链表节点表示一个数据包,包个数用成员nroutq记录。
  • synchbase xenomai资源同步对象,当没有数据时会阻塞在xnsynch等待资源可用。
  • ops 动态发送数据过程中执行的回调函数。
  • xstate 指向私有数据,对于xddp指向xddp_socket。

接着是linux相关成员:

  • status linux端收发操作状态码,各状态码定义如下

    #define XNPIPE_KERN_CONN         0x1      /*内核端(rt)已连接*/
    #define XNPIPE_KERN_LCLOSE       0x2    /*内核端(rt)关闭*/
    #define XNPIPE_USER_CONN         0x4    /*用户端(nrt)已链接*/
    #define XNPIPE_USER_SIGIO        0x8    /*用户(nrt)已设置异步通知*/
    #define XNPIPE_USER_WREAD        0x10     /*用户(nrt)端读*/
    #define XNPIPE_USER_WREAD_READY  0x20     /*用户端(nrt)读就绪*/
    #define XNPIPE_USER_WSYNC        0x40    /*用户端(nrt)写同步*/
    #define XNPIPE_USER_WSYNC_READY  0x80    /*rt端已读数据,待完成写同步唤醒nrt*/
    #define XNPIPE_USER_LCONN        0x100    /*(nrt)端正在执行连接操作*/
    
  • asyncq 异步通知队列用于linux端poll操作。

  • readq linux端读等待队列,当没有数据时会在该队列上阻塞,知道有数据可读。

  • syncq linux端写同步队列,对同步发送的数据包,会在该队列上阻塞知道数据包被实时端读取。

  • wcount 使用同一个xnpipe的linux端进程数。

  • ionrd 缓冲区数据包长度。

2.2 xnpipe与xddp_socket关联

回到__xddp_bind_socket()接着调用xnpipe_connect()开始执行bind工作,sa->sipc_port中保存着我们要使用的rtipc端口(XNPIPE),如果为-1表示自动分配,自动分配后Linux端可通过上节设置的label来找到该xddp。

int xnpipe_connect(int minor, struct xnpipe_operations *ops, void *xstate)
{
   
   
    struct xnpipe_state *state;
    int need_sched = 0, ret;
    spl_t s;

    minor = xnpipe_minor_alloc(minor);
    .....
    state = &xnpipe_states[minor];

    xnlock_get_irqsave(&nklock, s);
    ret = xnpipe_set_ops(state, ops);
    .....

    state->status |= XNPIPE_KERN_CONN;
    xnsynch_init(&state->synchbase, XNSYNCH_FIFO, NULL);
    state->xstate = xstate;
    state->ionrd = 0;

    if (state->status & XNPIPE_USER_CONN) {
   
   
        if (state->status & XNPIPE_USER_WREAD) {
   
   
            /*
             * Wake up the regular Linux task waiting for
             * the kernel side to connect (xnpipe_open).
             */
            state->status |= XNPIPE_USER_WREAD_READY;
            need_sched = 1;
        }

        if (state->asyncq) {
   
       /* Schedule asynch sig. */
            state->status |= XNPIPE_USER_SIGIO;
            need_sched = 1;
        }
    }

    if (need_sched)
        xnpipe_schedule_request();

    xnlock_put_irqrestore(&nklock, s);

    return minor;
}

在xnpipe_connect中首先根据传入的sa->sipc_port,分配对应的XNPIPE设备号minor

static inline int xnpipe_minor_alloc(int minor)
{
   
   
......
    if (minor == XNPIPE_MINOR_AUTO)//(-1)表示自动分配端口
        minor = find_first_zero_bit(xnpipe_bitmap, XNPIPE_NDEVS);

    if (minor == XNPIPE_NDEVS ||
        (xnpipe_bitmap[minor / BITS_PER_LONG] &
         (1UL << (minor % BITS_PER_LONG))))
        minor = -EBUSY;
    else
        xnpipe_bitmap[minor / BITS_PER_LONG] |=
            (1UL << (minor % BITS_PER_LONG));
    .....

    return minor;
}

xnpipe_minor_alloc()就是去xnpipe_bitmap中查看我们要bind的rtipc_port是否已经被使用,指定-1则表示自动分配。得到可用的minor后,就去xnpipe_states[]中得到对应的struct xnpipe_state,配置到xnpipe的ops,初始化xenomai资源同步对象state->synchbase,设置状态掩码为rt已链接,如果nrt此时也处于open xddp设备状态,唤醒 Linux任务,以等待linux内核端连接。

接着__xddp_bind_socket()剩余部分,如果我们设置的是使用label方式,自动分配的端口号,就调用xnregistry_enter注册一个实时对象xnregistry,以便linux端通过路径/proc/xenomai/registry/rtipc/xddp/%s来打开通讯端点。

将分配的XNPIPE minor与rddm_fd对应关系保存到portmap[]中;

static int __xddp_bind_socket(struct rtipc_private *priv,
                  struct sockaddr_ipc *sa)
{
   
       
/* Set default destination if unset at binding time.*/
    if (sk->peer.sipc_port < 0)
        sk->peer = *sa;

    if (poolsz > 0)
        xnheap_set_name(sk->bufpool, "xddp-pool@%d", sa->sipc_port);

    if (*sk->label) {
   
   /*使用xlabel*/
        ret = xnregistry_enter(sk->label, sk, &sk->handle,
                       &__xddp_pnode.node);
    .......
    }

    cobalt_atomic_enter(s);
    portmap[sk->minor] = rtdm_private_to_fd(priv);
    __clear_bit(_XDDP_BINDING, &sk->status);
    __set_bit(_XDDP_BOUND, &sk->status);
    if (xnselect_signal(&priv->send_block, POLLOUT))
        xnsched_run();
    cobalt_atomic_leave(s);

    return 0;
}

xddp-shawd

到此分配好了一个XNPIPE对象,内核所有数据结构初始化好,实时应用可以使用该socket发送接收数据了。

3. xnpipe设备注册流程

上面仅简单说明了xnpipe_state,没有看xnpipe在linux端注册的具体过程,其实就是注册一个字符设备,xnpipe在linux端的初始化是在xenomai内核初始化过程中调用xnpipe_mount()完成初始化。

static int __init xenomai_init(void)
{
   
   
    ......
    ret = xnpipe_mount(); /*注册进程间通讯管道xnpipe*/  
    ......
}
static struct file_operations xnpipe_fops = {
   
   
    .read = xnpipe_read,
    .write = xnpipe_write,
    .poll = xnpipe_poll,
    .unlocked_ioctl = xnpipe_ioctl,
    .open = xnpipe_open,
    .release = xnpipe_release,
    .fasync = xnpipe_fasync
};

int xnpipe_mount(void)
{
   
   
    struct xnpipe_state *state;
    struct device *cldev;
    int i;
    for (state = &xnpipe_states[0];
         state < &xnpipe_states[XNPIPE_NDEVS]; state++) {
   
   
        state->status = 0;
        state->asyncq = NULL;
        INIT_LIST_HEAD(&state->inq); /*初始化数据包链表*/
        state->nrinq = 0;
        INIT_LIST_HEAD(&state->outq);/*初始化数据包链表*/
        state->nroutq = 0;
    }
    /*创建class*/
    xnpipe_class = class_create(THIS_MODULE, "frtpipe");
    if (IS_ERR(xnpipe_class)) {
   
   
        printk(XENO_ERR "error creating rtpipe class, err=%ld\n",
               PTR_ERR(xnpipe_class));
        return -EBUSY;
    }
    /*创建设备*/
    for (i = 0; i < XNPIPE_NDEVS; i++) {
   
     /*创建rtp1-rtpn*/
        cldev = device_create(xnpipe_class, NULL,
                      MKDEV(XNPIPE_DEV_MAJOR, i),
                      NULL, "rtp%d", i);
    .......
    }
    /*注册字符设备*/
    if (register_chrdev(XNPIPE_DEV_MAJOR, "rtpipe", &xnpipe_fops)) {
   
   
        ......
    }
    /*注册xenomai与linux间异步唤醒虚拟中断*/
    xnpipe_wakeup_apc =
        xnapc_alloc("pipe_wakeup", &xnpipe_wakeup_proc, NULL);

    return 0;
}

3.1 xnpipe初始化与设备创建

xnpipe_mount()中,内核构建的时候我们在指定了多少个xnipipe就要注册多少个字符设备

  1. 将xnpipe_states[]内的xnpipe对象初始化。

  2. 创建设备类.

  3. 创建设备.

    device_create()
        ->device_create_vargs()
            ->device_create_groups_vargs()
                ->dev = kzalloc(sizeof(*dev), GFP_KERNEL);
                ->retval = device_add(dev);
    

    device_addpinctrl

    设备添加过程中,向用户空间发出uevent(添加对象)事件,用户空间的守护进程systemd-udevd监听到该事件后,systemd-udevd/dev下生成设备节点/dev/rtpX.

3.2注册rtpipe设备

接着注册字符设备,将file_operation与cdev实列关联,其file_operationsxnpipe_fops.linux端最终通过这些接口来操作设备/dev/rtpX来与xenomai 应用通讯。

static struct file_operations xnpipe_fops = {
    .read = xnpipe_read,
    .write = xnpipe_write,
    .poll = xnpipe_poll,
    .unlocked_ioctl = xnpipe_ioctl,
    .open = xnpipe_open,
    .release = xnpipe_release,
    .fasync = xnpipe_fasync
};
int __register_chrdev(unsigned int major, unsigned int baseminor,
              unsigned int count, const char *name,
              const struct file_operations *fops)
{
   
   
    struct char_device_struct *cd;
    struct cdev *cdev;
    int err = -ENOMEM;

    cd = __register_chrdev_region(major, baseminor, count, name);

    cdev = cdev_alloc();
    cdev->owner = fops->owner;
    cdev->ops = fops;
    kobject_set_name(&cdev->kobj, "%s", name);

    err = cdev_add(cdev, MKDEV(cd->major, baseminor), count);
    cd->cdev = cdev;

    return major ? 0 : cd->major;
}

字符设备在内核设备数据库中由cdev结构体表示,字符设备驱动程序的主要工作就是创建并向内核注册cdev实例。注册的方式是调用 __register_chrdev_region,传入注册字符设备的主次设备号和名称(==这里需要注意了,次设备号就是数组下标,也就是我们bind的端口号==),然后分配一个 struct cdev结构,将 cdev 的 ops 成员变量指向这个模块声明的 file_operations。然后,cdev_add 会将这个字符设备添加到内核中一个叫作 struct kobj_map *cdev_map 的结构,来统一管理所有字符设备。

其中,MKDEV(cd->major, baseminor) 表示将主设备号和次设备号生成一个 dev_t 的整数,然后将这个整数 dev_tcdev关联起来。

int cdev_add(struct cdev *p, dev_t dev, unsigned count)
{
   
   
    int error;

    p->dev = dev;
    p->count = count;

    error = kobj_map(cdev_map, dev, count, NULL,
             exact_match, exact_lock, p);
    kobject_get(p->kobj.parent);

    return 0;
}

3.3 注册xnpipe_wakeup_apc

接着注册一个异步过程调用(Asynchronous Procedure Call)xnpipe_wakeup_apc,apc基于ipipe虚拟中断。通过APC,Xenomai域中的活动可以让在Linux内核重新获得控制后,让要延迟处理的程序尽快的在linux域中调度。

xnpipe_wakeup_apc是ipipe实现的一种虚拟中断机制,主要用于xenomai内核与linux内核的事件通知,其处理过程和ipipe处理硬件中断一致,所以实时性好。其具体实现会在ipipe系列文章中详细解析,敬请关注本博客。

现简单说明其作用:linux端一个任务$nrt$与xenomai实时任务$rt$使用xddp进行通讯,此时$nrt$读阻塞等待数据,当$rt$向$nrt$发送数据后,xenomai内核就会发送一个xnpipe_wakeup_apc,由于是基于ipipe虚拟中断实现,相当于给linux发送了一个中断,发送后会将该虚拟中断暂时在linux域挂起,当linux得到运行时才会去处理该虚拟中断的handler,进而知道可以唤醒阻塞的$nrt$,这个过程中完全是在xenomai域完成的,对xenomai实时性没有任何影响。

后续文章将从linux端、实时端的数据收发接口进行解析XDDP的详细通讯过程,请关注本博客。

目录
相关文章
|
4天前
|
运维 Linux
Linux查找占用的端口,并杀死进程的简单方法
通过上述步骤和命令,您能够迅速识别并根据实际情况管理Linux系统中占用特定端口的进程。为了获得更全面的服务器管理技巧和解决方案,提供了丰富的资源和专业服务,是您提升运维技能的理想选择。
8 1
|
17天前
|
监控 安全 Java
linux服务器上启动framework应用程序流程
【10月更文挑战第17天】在Linux服务器上启动Framework应用程序需经过准备工作、部署、启动、监控及访问五个步骤。首先确保服务器满足系统要求并安装依赖项;接着上传应用文件,编译构建,配置参数;然后通过脚本、命令行或系统服务启动应用;启动后检查日志,监控性能;最后确认访问地址,验证应用运行状态。具体操作应参照应用文档。
|
16天前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
【10月更文挑战第9天】本文将深入浅出地介绍Linux系统中的进程管理机制,包括进程的概念、状态、调度以及如何在Linux环境下进行进程控制。我们将通过直观的语言和生动的比喻,让读者轻松掌握这一核心概念。文章不仅适合初学者构建基础,也能帮助有经验的用户加深对进程管理的理解。
15 1
|
20天前
|
JavaScript 前端开发 UED
Vue执行流程及渲染解析
【10月更文挑战第5天】
|
21天前
|
消息中间件 Linux API
Linux c/c++之IPC进程间通信
这篇文章详细介绍了Linux下C/C++进程间通信(IPC)的三种主要技术:共享内存、消息队列和信号量,包括它们的编程模型、API函数原型、优势与缺点,并通过示例代码展示了它们的创建、使用和管理方法。
20 0
Linux c/c++之IPC进程间通信
|
21天前
|
Linux C++
Linux c/c++进程间通信(1)
这篇文章介绍了Linux下C/C++进程间通信的几种方式,包括普通文件、文件映射虚拟内存、管道通信(FIFO),并提供了示例代码和标准输入输出设备的应用。
17 0
Linux c/c++进程间通信(1)
|
13天前
|
敏捷开发 数据可视化 测试技术
解析软件项目管理:以板栗看板为例,其如何有效影响并优化软件开发流程
软件项目管理是一个复杂而重要的过程,涵盖了软件产品的创建、维护和优化。其核心目标是确保软件项目能够顺利完成,同时满足预定的质量、时间和预算目标。本文将深入探讨软件项目管理的内涵及其对软件开发过程的影响,并介绍一些有效的管理工具。
|
16天前
|
监控 Java Linux
linux服务器上启动framework应用程序流程
【10月更文挑战第18天】在 Linux 服务器上启动框架应用程序的流程包括:准备工作(确保访问权限、上传部署文件、了解启动要求)、检查依赖项、配置环境变量、切换到应用程序目录、启动应用程序、监控启动过程以及验证应用程序是否正常运行。具体步骤可能因应用程序类型和框架而异。
|
21天前
|
Linux C++
Linux c/c++进程之僵尸进程和守护进程
这篇文章介绍了Linux系统中僵尸进程和守护进程的概念、产生原因、解决方法以及如何创建守护进程。
15 0
|
18天前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
39 0