数据结构/C++:AVL树

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 数据结构/C++:AVL树

概念

AVL树是一种自平衡二叉搜索树(BST),被命名为Adelson-Velskii和Landis树,以它们的发明者们的名字命名。AVL树通过在插入和删除操作后进行自旋操作来保持树的平衡,以确保树的高度始终保持在O(logN)。这样可以减少树的平均长度,提高搜索效率。

一颗二叉搜索树,如果每个根节点的左右子树的高度差的绝对值不超过1,那么这就是一颗AVL树

比如这就是一颗高度不平衡的树:

这是一颗AVL树:

那么我们要如何实现一颗AVL树?

一般的二叉搜索树在插入新节点以及删除节点时,都有可能会破坏树的平衡,所以AVL树需要对插入以及删除接口做修改,每次插入删除时,都要检测一下当前的树时候符合AVL树,如果不符合,要做出相应的调整措施。


实现

插入

限制于AVL树的要求,每个根节点的左右子树高度差绝对值不超过1,我们在此处为AVL树增加一个成员_bf,称为平衡因子(balance factor),其值为左右子树高度的差值,当这个差值的绝对值>=2,就说明这个节点的左右子树不平衡,那么我们就要使用相应的手段调整这棵树。在此处,本博客的平衡因子为 右子树高度 - 左子树高度,这样顺序没有严格要求。

AVL树节点类:

template<class K, class V>
struct AVLTreeNode
{
    AVLTreeNode* _left;
    AVLTreeNode* _right;
    AVLTreeNode* _parent;
    int _bf;
    pair<K, V> _kv;

    AVLTreeNode(const pair<K, V>& kv)
        : _left(nullptr)
        , _right(nullptr)
        , _parent(nullptr)
        , _bf(0)
        , _kv(kv)
    {}
};

_left:指向左子树

_right:指向右子树

_parent:指向父节点

_bf:平衡因子

_kv:存储的键值对

首先,由于平衡因子的限制,我们的AVL树任何一颗高为h + 1的子树只有可能会出现以下三种情况:

也就是,平衡因子为01-1三种情况。

现在对这个AVL树进行插入操作,也就有多种可能,由于平衡因子为1-1的情况是对称的,所以此处先举例平衡因子为-1的情况:

三种情况分别是:

  1. 两棵子树等高的情况,在任意一边插入
  2. 两棵子树不等高的情况,在矮的子树插入
  3. 两颗子树不等高的情况,在高的子树插入

首先,对于第一种情况,两棵子树等高,在任意一边插入:

对于这颗子树,其会有一颗子树变高,一颗子树不变,更新平衡因子:从_bf = 0变成_bf = 1或_bf = -1,此时平衡因子还处于正常范围内,这颗子树还是一颗AVL树。但是对于这颗子树的父节点,其一边的子树高度增加,所以还要往上影响父节点,往上继续判断。

情况一:_bf = 0变成_bf = 1或_bf = -1,不影响AVL结构,影响父节点

对于第二种情况: 两棵子树不等高的情况,在矮的子树插入:

对于这颗子树,其矮的子树变高了,而且会与另外一颗子树等高,更新平衡因子:从_bf = 1或_bf = -1变成_bf = 0。不影响AVL结构,原先整个子树高度是h + 1,插入节点后并没有影响整颗子树的高度,所以对于这个子树的父节点,不会受到影响。

情况二:_bf = 1或_bf = -1变成_bf = 0,不影响AVL结构,不影响父节点

对于第三种情况:两颗子树不等高的情况,在高的子树插入:

对于这颗子树,其高的子树变得更高了,更新平衡因子:从_bf = 1或_bf = -1变成_bf = 2或_bf = -2。这个插入操作影响了AVL树的结构,此时要立刻调整当前子树,让其平衡。

情况三:_bf = 1或_bf = -1变成_bf = 2或_bf = -2,影响AVL结构,立刻调整子树

那么我们先写出当前的代码逻辑,既然要插入,那么就要先找到合适的位置插入,代码如下:

bool Insert(const pair<K, V>& kv)
{
    if (_root == nullptr)
    {
        _root = new Node(kv);
    }

    Node* cur = _root;
    Node* parent = nullptr;

    while (cur)
    {
        if (cur->_kv.first < kv.first)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_kv.first > kv.first)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            return false;
        }
    }

    cur = new Node(kv);

    if (parent->_kv.first > kv.first)
        parent->_left = cur;
    else
        parent->_right = cur;

    cur->_parent = parent;
   
   //调整平衡
   //......
   //......
   //......
   
    return true;
}

接下来,我先解析以上代码的逻辑:

if (_root == nullptr)
{
  _root = new Node(kv);
}

如果我们插入节点时,根节点_root为空,说明当前整棵树都为空,那么我们直接插入值作为根节点即可


while (cur)
{
  if (cur->_kv.first < kv.first)
  {
    parent = cur;
    cur = cur->_right;
  }
  else if (cur->_kv.first > kv.first)
  {
    parent = cur;
    cur = cur->_left;
  }
  else
  {
    return false;
  }
}

以上代码,是在找到合适的插入位置,当key大于当前节点cur->_kv.first < kv.first,那么cur就向左寻找,反之向右寻找。如果当前节点值等于key,那么说明该节点已经存在,返回false代表插入失败。当我们的cur为空指针,说明已经找到了插入的节点,此时跳出循环进行插入。


cur = new Node(kv);

if (parent->_kv.first > kv.first)
  parent->_left = cur;
else
  parent->_right = cur;

cur->_parent = parent;

到达此处,说明前面已经找到插入的位置了,而parent节点就是插入位置的父亲节点。根据key的大小,来判断插入到左边还是右边,插入完成后,再让新节点的_parent指向parent。


至此我们就完成了插入操作,接下来就要根据一开始推导的三种情况进行调整。


既然我们在parent处插入了节点,那么我们第一步就是更新parent的平衡因子:


如果cur是parent的左子树,那么平衡因子-1

如果curparent的右子树,那么平衡因子+1

if (cur == parent->_left)
    parent->_bf--;
else
    parent->_bf++;

更新完平衡因子后,就要判断属于三种情况的哪一种:

if (parent->_bf == 0)
{
  //情况二
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
  //情况一
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
  //情况三
}
else
{
    assert(false);
}

如果我们的平衡因子在插入后是0,说明原先平衡因子是1或-1,此操作是两棵子树不等高的情况,在矮的子树插入,即情况二。

如果我们的平衡因子在插入后是1或-1,说明原先平衡因子是0,此操作是两棵子树等高的情况,在任意一边插入,即情况一。

如果我们的平衡因子在插入后是2或-2,说明原先平衡因子是1或-1,此操作是两颗子树不等高的情况,在高的子树插入,即情况三。

如果不是以上情况,说明在插入这个节点之前,就已经违反了AVL树的规则,直接assert退出程序,避免出现更糟糕的错误。

代码实现:

情况一:_bf = 0变成_bf = 1_bf = -1,不影响AVL结构,影响父节点

其不会影响自身的AVL结构,所以不用对自生做操作,但是由于其高度增加了,所以有可能会影响其父节点,那么此时我们就要去看看父节点是否平衡。而对于其父节点而言,也必然会是三种情况之一,所以我们只需要一个循环即可:

 while (parent)
 {
     if (cur == parent->_left)
         parent->_bf--;
     else
         parent->_bf++;

     if (parent->_bf == 0)
     {
      //情况二
     }
     else if (parent->_bf == 1 || parent->_bf == -1)
     {
         cur = cur->_parent;
         parent = parent->_parent;
     }
     else if (parent->_bf == 2 || parent->_bf == -2)
     {
      //情况三
     }
     else
     {
         assert(false);
     }
 }

解析:

while (parent)  {   //......  }

这个while循环用于不停的判断父节点的平衡因子,并作出调整,直到某次调整不会影响父节点,或者已经到达根节点了,就退出循环。


parent->_bf--; else
parent->_bf++; 

这个步骤是在更新父节点的平衡因子。

后续判断当前的父节点属于哪一种情况,并做出相应措施,其中我们已经分析了第一种情况:

else if (parent->_bf == 1 || parent->_bf == -1) 
{
    cur = cur->_parent;
    parent = parent->_parent; 
}

如果当前的处于情况一,那么此次不需要调整,但是会影响其父节点,所以parent = parent->_parent;来更新父节点,并进入下一次while循环判断。

情况二:_bf = 1_bf = -1变成_bf = 0,不影响AVL结构,不影响父节点

因为其不会影响自己以外的节点,也没有破坏平衡,所以直接跳出while循环,啥也不用做。

if (parent->_bf == 0)
{
  break;
}

情况三:_bf = 1_bf = -1变成_bf = 2_bf = -2,影响AVL结构,立刻调整子树

我们先看到当前的调整总代码:

 while (parent)
 {
     if (cur == parent->_left)
         parent->_bf--;
     else
         parent->_bf++;

     if (parent->_bf == 0)
     {
         break;
     }
     else if (parent->_bf == 1 || parent->_bf == -1)
     {
         cur = cur->_parent;
         parent = parent->_parent;
     }
     else if (parent->_bf == 2 || parent->_bf == -2)
     {
      //情况三
        //调整平衡
        //......
        //......
        //......
     }
     else
     {
         assert(false);
     }
 }

现在只差情况三了,而情况三比较复杂,我们现在分析一下:

第三种情况如下:

也就是子树不等高的情况下,在高子树插入节点,导致原本高的子树更高了,破坏了平衡。

以左侧为例,我们将高度为h的子树拆分出来,其一定是是以下情况之一:

为什么一定是这两种情况?高度为h的子树的两个子树一定是h-1吗?其实并不是的,我们先看看如果有一颗子树不为h-1会发生什么:

可以看到,这两种插入的情况,左子树的值分别是-2和0。对于0,此时左子树本身高度既没有变化,也没有破坏AVL结构,根本就不会影响到最高处的节点。对于-2,此时左子树已经破坏了AVL结构,此时应该先对左子树直接调整,处理问题,而不是留到最顶上的节点时,再去调整左子树。因此这两种情况下,循环根本就到不了最顶部的节点,情况三的两棵子树高度一定相等。

也就是以下情况:

对于左侧情况,叫做LL失衡(L表示left),对于右侧情况,叫做LR失衡(R表示right)。

LL失衡对应的是RR失衡,我们先解决这两种情况的失衡:


想要解决这两种失衡,就分别要用到左单旋算法右单旋算法


右单旋

我们先看到右单旋的示意图,再做讲解:

我来解析一下以上过程:

我们在subL节点的左子树插入了一个节点,导致parent失衡,接着我们就要尝试调整节点,让这棵树平衡。

由于subL的右子树subLR高度为h-1,而parent的右子树高度也为h-1,此时我们可以想办法把这两个h-1的等高子树凑到一起去,于是我们把parent的左子树断开,把subL的右子树拿去给parent做左子树,此时parent就得到了等高的两棵子树。也就是第二张图片的情况。

随后,以parent为根的树,总高度为h,而subL的左子树刚好高度也是h-1+1 = h,所以我们可以把parent交给subL做子树,这样subL的两边也就平衡了。而刚刚我们把subL的右子树空出来了,此时可以直接转移,就得到了第三种图片的情况。

这个情况下,我们以subL为根的树是一颗平衡的树,而且平衡因子为0,插入节点前以parent为根的子树,高度为h+1,插入节点且旋转后高度仍为h+1。插入前后高度不变,不会影响父节点,直接跳出循环。

接下来我们完成右单旋的代码:

//右单旋
void RotateR(Node* parent)
{
    Node* subL = parent->_left;
    Node* subLR = subL->_right;

    parent->_left = subLR;
    if (subLR)
        subLR->_parent = parent;

    subL->_right = parent;
    Node* ppNode = parent->_parent;
    parent->_parent = subL;

    if (parent == _root)
    {
        _root = subL;
        subL->_parent = nullptr;
    }
    else
    {
        if (ppNode->_left == parent)
            ppNode->_left = subL;
        else
            ppNode->_right = subL;

        subL->_parent = ppNode;
    }

    parent->_bf = 0;
    subL->_bf = 0;
}

代码解析:

parent->_left = subLR;
if (subLR)
    subLR->_parent = parent;

此代码完成了parentsubLR之间的链接,要注意的是,subLR有可能是空指针,比如这样:

所以在访问 subLR->_parent之前,需要先确保subRL不是空指针。

subL->_right = parent;
Node* ppNode = parent->_parent;
parent->_parent = subL;

这一段代码完成了subLparent之间的链接,由于parent可能还有父节点,所以我们先把parent的父节点ppNode保存下来,后续完成subLppNode链接。

if (parent == _root)
{
    _root = subL;
    subL->_parent = nullptr;
}
else
{
    if (ppNode->_left == parent)
        ppNode->_left = subL;
    else
        ppNode->_right = subL;

    subL->_parent = ppNode;
}

这一段代码,完成了ppNode与subL之间的链接,但是如果parent原先是_root节点的话,那么ppNode就是空指针,此时直接把_root更新为subR即可。

如果parent不是_root,那么直接进行链接即可,由于不确定parent原先是ppNode的左子树还是右子树,所以链接前需要检测一下。

parent->_bf = 0;
subL->_bf = 0;

这段代码则是完成平衡因子的更新,左单旋后,parentsubL的平衡因子都变成0

以下是一个右单旋的示例:


左单旋

左单旋与右单旋同理,此处直接放出动图与代码:

//左单旋
void RotateL(Node* parent)
{
    Node* subR = parent->_right;
    Node* subRL = subR->_left;

    parent->_right = subRL;
    if (subRL)
        subRL->_parent = parent;

    subR->_left = parent;
    Node* ppNode = parent->_parent;
    parent->_parent = subR;

    if (parent == _root)
    {
        _root = subR;
        subR->_parent = nullptr;
    }
    else
    {
        if (ppNode->_left == parent)
            ppNode->_left = subR;
        else
            ppNode->_right = subR;

        subR->_parent = ppNode;
    }

    parent->_bf = 0;
    subR->_bf = 0;
}

以下是一个左单旋的示例:


我们现在还有两种失衡没有解决:

对于这种失衡,我们需要用到双旋算法:左右双旋右左双旋


左右双旋

当AVL树出现LR失衡,我们就需要用到左右双旋LR失衡又分为以下两种情况:

也就是对subLR进行了再细分,到底新节点插入了左子树还是右子树。那么我们先展示一下左右双旋的过程:

subLR的左子树插入后旋转:

subLR的右子树插入后旋转:

我来解析一下以上过程:

我们在subLR节点的右子树插入了一个节点,导致parent失衡,接着我们就要尝试调整节点,让这棵树平衡。


现在假设我们直接对parent进行右单旋,我们就会得到:

可以发现,直接右单旋得到的树是不平衡的,subL的左子树高度为h-1,右子树高度为h+1,两者高度差为2。这是由于subLR的高度太高了,当把subLR移交给parent左子树,没有完成降低高度的功能。所以我们要想办法降低移交给parent的子树高度,再进行右单旋。

所以我们把subLR子树的根节点抽离出来,先对subL进行左单旋:

对subL进行左单旋,可以把subLR的左子树抽离出来,并提升subLR的高度。此时再进行右单旋,subLR就会把右子树交给parent。相比于直接进行右单旋,这个过程把subLR抽出来,parent得到的左子树少了一层高度(即subLR这层),所以parent这次没有出现不平衡的问题。

那为什么subLR到达顶部之后,也可以保持稳定呢?

可以看到,在subLR向上走的过程中,分别把左右子树交给了parent和subL,而parent和subL原先都有一个高度为h-1的子树,而subLR旋转过程中移交给parent和subL的子树高度分别是h-1和h-2,它们都低于h-1,移交过程中不会影响subL和parent的高度,而这两个节点最后分别成为了subLR的左右子树,所以subLR的左右子树最后高度一定都是h-1。因此subLR平衡因子一定为0。

现在我们来完成代码:

//左右双旋
void RotateLR(Node* parent)
{
    Node* subL = parent->_left;
    Node* subLR = subL->_right;
    //更新平衡因子
}

现在的问题就是,要如何更新平衡因子?

subLR的左子树插入后旋转:

subLR的右子树插入后旋转:

subLR就是新插入的节点:

可以看到,整体上有三种情况,三种情况对应的平衡因子最后都不同,所以我们要分类讨论。三种情况的区别在于:第一种情况subLR的平衡因子为-1,第二种情况subLR的平衡因子为1,第三种情况subLR的平衡因子为0

这样我们就可以写出以下代码:

//左右双旋
void RotateLR(Node* parent)
{
    Node* subL = parent->_left;
    Node* subLR = subL->_right;

    int bf = subLR->_bf;
    RotateL(parent->_left);
    RotateR(parent);

    if (bf == -1)
    {
        subLR->_bf = 0;
        subL->_bf = 0;
        parent->_bf = 1;
    }
    else if (bf == 1)
    {
        subLR->_bf = 0;
        subL->_bf = -1;
        parent->_bf = 0;
    }
    else if (bf == 0)
    {
        subLR->_bf = 0;
        subL->_bf = 0;
        parent->_bf = 0;
    }
    else
    {
        assert(false);
    }
}

以下是一个左右双旋示例:


右左双旋

代码如下:

//右左双旋
void RotateRL(Node* parent)
{
    Node* subR = parent->_right;
    Node* subRL = subR->_left;

    int bf = subRL->_bf;
    RotateR(parent->_right);
    RotateL(parent);

    if (bf == -1)
    {
        subR->_bf = 1;
        subRL->_bf = 0;
        parent->_bf = 0;
    }
    else if (bf == 1)
    {
        subR->_bf = 0;
        subRL->_bf = 0;
        parent->_bf = -1;
    }
    else if (bf == 0)
    {
        subR->_bf = 0;
        subRL->_bf = 0;
        parent->_bf = 0;
    }
    else
    {
        assert(false);
    }
}

以下是一个右左双旋示例:


总代码展示

由于插入操作已经可以很好的理解AVL控制平衡的手段了,此处就不讲解erase操作了,总代码如下:

AVLTree.h

#pragma once
#include <iostream>
#include <assert.h>
using namespace std;

template<class K, class V>
struct AVLTreeNode
{
    AVLTreeNode* _left;
    AVLTreeNode* _right;
    AVLTreeNode* _parent;
    int _bf; // balance factor
    pair<K, V> _kv;

    AVLTreeNode(const pair<K, V>& kv)
        : _left(nullptr)
        , _right(nullptr)
        , _parent(nullptr)
        , _bf(0)
        , _kv(kv)
    {}
};

template<class K, class V>
class AVLTree
{
    typedef AVLTreeNode<K, V> Node;
public:
    bool Insert(const pair<K, V>& kv)
    {
        if (_root == nullptr)
        {
            _root = new Node(kv);
        }

        Node* cur = _root;
        Node* parent = nullptr;

        while (cur)
        {
            if (cur->_kv.first < kv.first)
            {
                parent = cur;
                cur = cur->_right;
            }
            else if (cur->_kv.first > kv.first)
            {
                parent = cur;
                cur = cur->_left;
            }
            else
            {
                return false;
            }
        }

        cur = new Node(kv);

        if (parent->_kv.first > kv.first)
            parent->_left = cur;
        else
            parent->_right = cur;

        cur->_parent = parent;

        while (parent)//最坏情况一直更新到root,此时parent为nullptr
        {
            if (cur == parent->_left)//更新平衡因子
                parent->_bf--;
            else
                parent->_bf++;

            if (parent->_bf == 0)
            {
                break;
            }
            else if (parent->_bf == 1 || parent->_bf == -1)//向上查找,检测是否出现不平衡
            {
                cur = cur->_parent;
                parent = parent->_parent;
            }
            else if (parent->_bf == 2 || parent->_bf == -2)
            {
                //旋转
                if (parent->_bf == 2 && cur->_bf == 1)//2,1说明右边子树深度阶梯式增加,所以往左旋转
                    RotateL(parent);//左单旋
                else if (parent->_bf == -2 && cur->_bf == -1)//-2,-1说明左边子树深度阶梯式增加,所以往右旋转
                    RotateR(parent);//右单旋
                else if (parent->_bf == -2 && cur->_bf == 1)//-2, 1说明左边子树中间深,先左单旋提高中间节点,再右单旋提高中间节点
                    RotateLR(parent);
                else if (parent->_bf == 2 && cur->_bf == -1)//2, -1说明右边子树中间深,先右单旋提高中间节点,再左单旋提高中间节点
                    RotateRL(parent);
                else
                    assert(false);

                break;
            }
            else //说明插入前AVL出现了问题,直接报错
            {
                assert(false);
            }
        }

        return true;
    }

    //左单旋
    void RotateL(Node* parent)
    {
        Node* subR = parent->_right;
        Node* subRL = subR->_left;

        parent->_right = subRL;
        if (subRL)
            subRL->_parent = parent;

        subR->_left = parent;
        Node* ppNode = parent->_parent;
        parent->_parent = subR;

        if (parent == _root)
        {
            _root = subR;
            subR->_parent = nullptr;
        }
        else
        {
            if (ppNode->_left == parent)
                ppNode->_left = subR;
            else
                ppNode->_right = subR;

            subR->_parent = ppNode;
        }

        parent->_bf = 0;
        subR->_bf = 0;
    }

    //右单旋
    void RotateR(Node* parent)
    {
        Node* subL = parent->_left;
        Node* subLR = subL->_right;

        parent->_left = subLR;
        if (subLR)
            subLR->_parent = parent;

        subL->_right = parent;
        Node* ppNode = parent->_parent;
        parent->_parent = subL;

        if (parent == _root)
        {
            _root = subL;
            subL->_parent = nullptr;
        }
        else
        {
            if (ppNode->_left == parent)
                ppNode->_left = subL;
            else
                ppNode->_right = subL;

            subL->_parent = ppNode;
        }

        parent->_bf = 0;
        subL->_bf = 0;
    }

    //左右双旋
    void RotateLR(Node* parent)
    {
        Node* subL = parent->_left;
        Node* subLR = subL->_right;

        int bf = subLR->_bf;
        RotateL(parent->_left);
        RotateR(parent);

        if (bf == -1)
        {
            subLR->_bf = 0;
            subL->_bf = 0;
            parent->_bf = 1;
        }
        else if (bf == 1)
        {
            subLR->_bf = 0;
            subL->_bf = -1;
            parent->_bf = 0;
        }
        else if (bf == 0)
        {
            subLR->_bf = 0;
            subL->_bf = 0;
            parent->_bf = 0;
        }
        else
        {
            assert(false);
        }
    }

    //右左双旋
    void RotateRL(Node* parent)
    {
        Node* subR = parent->_right;
        Node* subRL = subR->_left;

        int bf = subRL->_bf;
        RotateR(parent->_right);
        RotateL(parent);

        if (bf == -1)
        {
            subR->_bf = 1;
            subRL->_bf = 0;
            parent->_bf = 0;
        }
        else if (bf == 1)
        {
            subR->_bf = 0;
            subRL->_bf = 0;
            parent->_bf = -1;
        }
        else if (bf == 0)
        {
            subR->_bf = 0;
            subRL->_bf = 0;
            parent->_bf = 0;
        }
        else
        {
            assert(false);
        }
    }
    
    //中序
    void InOrder()
    {
        _InOrder(_root);
        cout << "end" << endl;
    }
    
private:
    //中序
    void _InOrder(Node* root)
    {
        if (root == nullptr)
            return;

        _InOrder(root->_left);
        cout << root->_kv.first << " - ";

        _InOrder(root->_right);
    }
    
    Node* _root = nullptr;
};

相关文章
|
1月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
142 77
|
1月前
|
存储 C++
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
【数据结构——树】哈夫曼树(头歌实践教学平台习题)【合集】目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:任务描述 本关任务:编写一个程序构建哈夫曼树和生成哈夫曼编码。 相关知识 为了完成本关任务,你需要掌握: 1.如何构建哈夫曼树, 2.如何生成哈夫曼编码。 测试说明 平台会对你编写的代码进行测试: 测试输入: 1192677541518462450242195190181174157138124123 (用户分别输入所列单词的频度) 预
60 14
【C++数据结构——树】哈夫曼树(头歌实践教学平台习题) 【合集】
|
1月前
|
存储 人工智能 算法
【C++数据结构——图】最短路径(头歌教学实验平台习题) 【合集】
任务描述 本关任务:编写一个程序,利用Dijkstra算法,实现带权有向图的最短路径。 相关知识 为了完成本关任务,你需要掌握:Dijkst本关任务:编写一个程序,利用Dijkstra算法,实现带权有向图的最短路径。为了完成本关任务,你需要掌握:Dijkstra算法。带权有向图:该图对应的二维数组如下所示:Dijkstra算法:Dijkstra算法是指给定一个带权有向图G与源点v,求从v到G中其他顶点的最短路径。Dijkstra算法的具体步骤如下:(1)初始时,S只包含源点,即S={v},v的距离为0。
61 15
|
1月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
48 12
|
1月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
46 10
|
1月前
|
算法 C++
【C++数据结构——图】最小生成树(头歌实践教学平台习题) 【合集】
【数据结构——图】最小生成树(头歌实践教学平台习题)目录 任务描述 相关知识 测试说明 我的通关代码: 测试结果:【合集】任务描述 本关任务:编写一个程序求图的最小生成树。相关知识 为了完成本关任务,你需要掌握:1.建立邻接矩阵,2.Prim算法。建立邻接矩阵 上述带权无向图对应的二维数组,根据它建立邻接矩阵,如图1建立下列邻接矩阵。注意:INF表示无穷大,表示整数:32767 intA[MAXV][MAXV];Prim算法 普里姆(Prim)算法是一种构造性算法,从候选边中挑
44 10
|
3月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
332 9
|
3月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
54 1
|
3天前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
1月前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
43 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】