[FNet]论文实现:FNet:Mixing Tokens with Fourier Transform

简介: [FNet]论文实现:FNet:Mixing Tokens with Fourier Transform

论文:FNet: Mixing Tokens with Fourier Transforms

作者:James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon

时间:2022

1. 介绍

transformer encode架构可以通过很多种方式进行加速,毫无例外的都是对attention mechanism 进行处理,通过把平方项的复杂度缩小到线性项的复杂度;

FNet没有用什么former后缀就表明,FNet并不是传统意义上transformer架构的优化,并不是在attention mechanism的优化;这里一个替换,利用线性的傅里叶变化替换掉注意力机制,在处理长文本的时候降低少许性能而巨大的提升训练推理速度和内存效率;

2. 架构

架构图如图所示,可以看到非常的清晰:

Discrete Fourier Transform(离散傅里叶变换): 对于 image.png ,有 image.png 如下:

image.png

对于傅里叶变换的方式有两种方法,第一种就是简单的利用矩阵进行计算,有矩阵 image.png

直接对序列乘个矩阵就好,另一种是FFT即the fast fourier transformer,采用最常见的算法是the Cooley–Tukey algorithm,将复杂度转化为 image.png

这里利用离散傅里叶变换,对sequence求一次,对d_model求一次,得到最后的序列形状和原来的序列形状一样;最后得到的结果是一个复数,是无法使用的,我们要将其转化到实数域上来;但是这里要注意的是,是在两次fourier转化后,再进行实域转化;标准的fourier sublayer采用的是直接取实数部分的方式,论文还提到了三种其他的方式进行实域转化:Hadamard, Hartley 和 Discrete Cosine Transforms. 这里Hartley的效果和直接取实域的效果相当,其使用的方法是利用实部减去虚部的方式;

# 利用pytorch计算 2d fourier变换
x = nn.fft.fftn(x)

得到傅里叶变化序列后,经过一次残差连接和正态化,再经过一层前馈神经网络从d_model到隐藏维度,接着经过一次残差连接和正态化,再来一次前馈神经网络从隐藏维度到d_model;这就是一个fourier transformer block;

其他结构与transformer相同;

下面是模型的对比,可以看到FNet mat的mixing layer ops 操作数量是和Linaer的操作数量是一致的,因为原理都差不多,都是相当于左右各乘了一个矩阵;

但是利用FFT可以明显的看到优势;

为什么有这种效果:傅里叶转化有一个混合token的效果,而feed-forward sublayer有逆傅里叶转化的效果,傅里叶转化是把时域转化为频域,而feed-forward sublayer是一个矩阵,类似于inverse fourier transformer可以把频域转化为时域;

3. 结果

从下图中可以发现FNet-Hybrid的效果最接近于BERT

这里FNet-Hybrid意味着最后两层Fourier sublayer被替换成full attention sublayer;

这图说明了对于更大、更慢的模型,BERT和FNet-Hybrid定义了the Pareto efficiency frontier;对于更小、更快的模型,FNet和线性模型定义了效率边界。

再看下图,感觉FNet的效果特别好;

4. 总结

TPU在计算矩阵相较于FFN有优势,而GPU在计算FFN相较于矩阵有优势;

FNet非常适合用于蒸馏,因为关键层没有权重;

FNet没有transformer decode,无法处理,未来需优化;


目录
相关文章
|
Java 数据库连接 数据库
Mybatis-plus逆向工程使用方法
本文讲解Mybatis-plus逆向工程使用方法。
1170 0
Mybatis-plus逆向工程使用方法
|
异构计算
Magisk模块:停用HW叠加层
Magisk模块:停用HW叠加层
4507 0
Magisk模块:停用HW叠加层
|
Web App开发 JavaScript 前端开发
Python 自动化 - 浏览器chrome打开F12开发者工具自动Paused in debugger调试导致无法查看网站资源问题原因及解决方法,javascript反调试问题处理实例演示
Python 自动化 - 浏览器chrome打开F12开发者工具自动Paused in debugger调试导致无法查看网站资源问题原因及解决方法,javascript反调试问题处理实例演示
1054 0
Python 自动化 - 浏览器chrome打开F12开发者工具自动Paused in debugger调试导致无法查看网站资源问题原因及解决方法,javascript反调试问题处理实例演示
|
存储 算法 关系型数据库
|
12月前
|
数据采集 存储 监控
Java爬虫:数据采集的强大工具
在数据驱动的时代,Java爬虫技术凭借其强大的功能和灵活性,成为企业获取市场信息、用户行为及竞争情报的关键工具。本文详细介绍了Java爬虫的工作原理、应用场景、构建方法及其重要性,强调了在合法合规的前提下,如何有效利用Java爬虫技术为企业决策提供支持。
|
人工智能 Serverless API
云原生应用开发平台CAP:一站式应用开发及生命周期管理解决方案
阿里云的云应用开发平台CAP(Cloud Application Platform)是一款一站式应用开发及应用生命周期管理平台。它提供丰富的Serverless与AI应用模板、高效的开发者工具链及企业级应用管理功能,帮助开发者快速构建、部署和管理云上应用,大幅提升研发、部署和运维效能。
906 4
|
机器学习/深度学习 存储 自然语言处理
Transformers从入门到精通:token和它的三种粒度
大家对于token的概念可能司空见惯了,现在的大语言模型的计费方式一般都采用输入和输出的token数量来计费。那到底什么是token,它的作用是什么?【6月更文挑战第6天】
1032 6
|
并行计算 开发者 Python
Python多线程和多进程在Web开发中的应用与挑战
Python多线程和多进程在Web开发中的应用与挑战
266 0
|
机器学习/深度学习 存储 编解码
利用深度学习优化视频压缩算法
【4月更文挑战第28天】随着数字媒体时代的到来,视频数据量急剧增加,有效的视频压缩技术变得尤为重要。本文探讨了一种基于深度学习的视频压缩框架,旨在提高压缩效率同时保持较高的视频质量。通过使用卷积神经网络(CNN)对视频帧进行特征提取,并结合先进的编码技术,本研究提出了一种新的率失真优化算法。实验结果表明,该算法在多个标准测试序列上相比传统方法能显著降低比特率,同时维持了良好的视觉质量。
|
算法
数学建模——曲线拟合
数学建模——曲线拟合
1242 1