[seq2seq]论文实现:Effective Approaches to Attention-based Neural Machine Translation(下)

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: [seq2seq]论文实现:Effective Approaches to Attention-based Neural Machine Translation(下)

[seq2seq]论文实现:Effective Approaches to Attention-based Neural Machine Translation(上)https://developer.aliyun.com/article/1504074?spm=a2c6h.13148508.setting.41.36834f0eMJOehx

二、论文解读

2.1 RNN模型

介绍seq2seq之前我们需要介绍一下RNN模型,RNN模型表示循环神经网络,具有代表性的有SimpleRNN,GRU,LSTM;其基本实现原理如图:

用公式表达如下:

image.png

其中 W , U , V 三者权重是共享的,所有RNN的参数数量是与 Xt的最后一个维度有关的,维度变化公式如下:

O[outputdim∗1]=V[outputdim∗units]·S[units∗1]+B[outputdim∗1]S[units∗1]=U[units∗xdim]·X[xdim∗1]+W[units∗units]·S[units∗1]+B[units∗1])

\begin{aligned} & O_{[output_{dim}*1]} =V_{[output_{dim}*units]}·S_{[units*1]} + B_{[output_{dim}*1]} \\ & S_{[units*1]} = U_{[units*x_{dim}]}·X_{[x_{dim}*1]}+W_{[units*units]}·S_{[units*1]}+B_{[units*1]}) \end{aligned}

所以,RNN需要的参数数量为(units+x_dim+1)*units + (units+1)*output_dim

2.2 Attention-based Models

论文中提出了两种Attention-based Model,分别是全局注意力模型和局部注意力模型;其结构图如下:

从图中可以看到,其全局和局部的区别在于 a t a_t atc t c_t ct 的不同,在分析之前,我们先定义一些变量: t t t 是时间步, a t a_t at 是模型对其权重向量,其主要是由于 h t h_t hth ‾ s \overline h_s hs计算得到, h s ‾ \overline{h_s} hs 是decoder中第s位置的state, c t c_t ct 被称作为内容向量,由 a t a_t ath s ‾ \overline{h_s} hs计算得到;

接下来我们依次对全局注意力和局部注意力进行分析;

Global attentional model

如图,ct 是由 at hs 计算得到,这里首先定义  at(s)的计算公式为:

at(s)=align(ht,hs¯)=exp(score(ht,hs¯))∑s′exp(score(ht,hs′¯))

论文中这里定义 image.png 有三种方式:

KaTeX parse error: Undefined control sequence: \cases at position 32: …rline{h_s}) = \̲c̲a̲s̲e̲s̲{ h_t^T\overlin…

这里用querykey,value 来解释就相当于 ht query , image.png 做  keyvalue;其流程为 image.png

Local attentional model

全局注意力机制有一个缺点,即它必须关注每个目标词的源端的所有单词,这是昂贵的,并可能使翻译更长的序列不切实际,例如段落或文档。这里使用局部注意力机制进行优化;

所谓局部注意力机制就是说我们不去计算所有位置,而是计算部分位置,那么这部分位置该怎么选择呢,在语言翻译模型中,某部分的target是由某部分的source构成的,在已知target的位置  t 时找到source的位置pt 论文中有两种方式取实现:

  • Monotonic alignmentpt=t
  • Predictive alignment image.png

这里的  vpWp都是参数;

在找到  pt 之后,我们对  [ptD,pt+D]这些位置上的  hs 进行注意力机制计算 at,ct

同时由于词距离pt 越远,则其影响越弱,这里论文中使用高斯分布的方式对 at取值:取值方式如下:

  image.png

根据经验我们一般把 a σ 设置为 image.png ,这就是局部注意力机制;

2.3 Input-feeding Approach

在全局和局部注意力模型中,其注意力部分都是独立进行的,并没有对下一个时间步的过程产生影响,这并不合理,在标准的MT中,通常在翻译过程中会维护一个覆盖集,以跟踪哪些源词已经被翻译过。同样地,在注意nmt中,对齐决策应该共同考虑到过去的对齐信息。我们可以优化一下,把每次的输出作为下一个时间步的输入;如图所示:

2.4 模型效果

论文中模型效果如图所示:

三、过程实现

3.1 导包

这里要用到的包有:tensorflow, keras_nlp, matplotlib, numpy

import tensorflow as tf
import keras_nlp
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.sans-serif']=['SimHei'] 
plt.rcParams['axes.unicode_minus']=False

3.2 数据准备

这里使用的是中英文翻译数据集,进行清洗和dataset构造

# 数据处理
def process_data(x):
    res = tf.strings.split(x, '\t')
    return res[1], res[3]
# 导入数据
dataset = tf.data.TextLineDataset('./data/transformer_data.tsv')
dataset = dataset.map(process_data)
# 建立中英文wordpiece词表
vocab_chinese = keras_nlp.tokenizers.compute_word_piece_vocabulary(
    dataset.map(lambda x, y: x),
    vocabulary_size=20_000,
    lowercase=True,
    strip_accents=True,
    split_on_cjk=True,
    reserved_tokens=["[PAD]", "[START]", "[END]", "[MASK]", "[UNK]"],
)
vocab_english = keras_nlp.tokenizers.compute_word_piece_vocabulary(
    dataset.map(lambda x, y: y),
    vocabulary_size=20_000,
    lowercase=True,
    strip_accents=True,
    split_on_cjk=True,
    reserved_tokens=["[PAD]", "[START]", "[END]", "[MASK]", "[UNK]"],
)
# 构建分词器
chinese_tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(vocabulary=vocab_chinese, oov_token="[UNK]")
english_tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(vocabulary=vocab_english, oov_token="[UNK]")
# 再进行一次数据处理
def process_data_(ch, en, maxtoken=128):
    
    ch = chinese_tokenizer(ch)[:,:maxtoken]
    en = english_tokenizer(tf.strings.lower(en))[:,:maxtoken]
    
    ch = tf.concat([tf.ones(shape=(64,1), dtype='int32'), ch, tf.ones(shape=(64,1), dtype='int32')*2], axis=-1).to_tensor()
    en = tf.concat([tf.ones(shape=(64,1), dtype='int32'), en, tf.ones(shape=(64,1), dtype='int32')*2], axis=-1)
    en_inputs = en[:, :-1].to_tensor()  # Drop the [END] tokens
    en_labels = en[:, 1:].to_tensor() # Drop the [START] tokens
    return (ch, en_inputs), en_labels
    
dataset = dataset.batch(64).map(process_data_)
train_dataset = dataset.take(1000)
val_dataset = dataset.skip(500).take(300)
# 数据准备完毕 查看数据
for (pt, en), en_labels in dataset.take(1):
    break
print(pt.shape)
print(en.shape)
print(en_labels.shape)

3.3 构建相关类

encoder:

class Encoder(tf.keras.layers.Layer):
    def __init__(self, vocabulary_size, d_model, units):
        super().__init__()
        self.embedding = tf.keras.layers.Embedding(vocabulary_size, d_model)
        self.rnn = tf.keras.layers.Bidirectional(
            layer=tf.keras.layers.LSTM(units=units, return_sequences=True, return_state=False),
            merge_mode='sum'
        )
    def call(self, inputs):
        x = inputs
        x = self.embedding(x)
        x = self.rnn(x)
        return x

crossattention:

class CrossAttention(tf.keras.layers.Layer):
    def __init__(self, units, **kwargs):
        super().__init__()
        self.mha = tf.keras.layers.MultiHeadAttention(key_dim=units, num_heads=1, **kwargs)
        self.add = tf.keras.layers.Add()
        self.norm = tf.keras.layers.LayerNormalization()
    def call(self, inputs):
        x, context = inputs
        attention_out, attention_score = self.mha(query=x, value=context, key=context, return_attention_scores=True)
        self.last_attention_score = attention_score
        x = self.add([x, attention_out])
        x = self.norm(x)
        return x

decoder:

class Decoder(tf.keras.layers.Layer):
    def __init__(self, vocabulary_size, d_model, units, **kwargs):
        super().__init__()
        self.embedding = tf.keras.layers.Embedding(vocabulary_size, d_model)
        self.rnn = tf.keras.layers.LSTM(units, return_sequences=True)
        self.attention = CrossAttention(units, **kwargs)
        self.dense = tf.keras.layers.Dense(vocabulary_size, activation='softmax')
    def call(self, inputs):
        x, context = inputs
        x = self.embedding(x)
        x = self.rnn(x)
        x = self.attention((x, context))
        x = self.dense(x)
        return x

seq2seq:

class Seq2Seq(tf.keras.models.Model):
    def __init__(self, vocabulary_size_1, vocabulary_size_2, d_model, units, **kwargs):
        super().__init__()
        self.encoder = Encoder(vocabulary_size=vocabulary_size_1, d_model=d_model, units=units)
        self.decoder = Decoder(vocabulary_size=vocabulary_size_2, d_model=d_model, units=units)
    def call(self, inputs):
        pt, en = inputs
        context = self.encoder(pt)
        output = self.decoder((en, context))
        return output

3.4 模型配置

构建模型如下:

seq2seq = Seq2Seq(chinese_tokenizer.vocabulary_size(), english_tokenizer.vocabulary_size(), 512, 30)
# build model
seq2seq((pt, en))
seq2seq.summary()

模型配置:

def masked_loss(y_true, y_pred):
  loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(reduction='none')
  loss = loss_fn(y_true, y_pred)
  
  mask = tf.cast(y_true != 0, loss.dtype)
  loss *= mask
  
  return tf.reduce_sum(loss)/tf.reduce_sum(mask)
def masked_acc(y_true, y_pred):
  y_pred = tf.argmax(y_pred, axis=-1)
  y_pred = tf.cast(y_pred, y_true.dtype)
  
  match = tf.cast(y_true == y_pred, tf.float32)
  mask = tf.cast(y_true != 0, tf.float32)
  
  return tf.reduce_sum(match)/tf.reduce_sum(mask)
seq2seq.compile(
    optimizer='adam',
    loss=masked_loss, 
    metrics=[masked_acc, masked_loss]
)
seq2seq.fit(train_dataset, epochs=10, validation_data=val_dataset)

模型训练结果如下:

作图:

plt.plot(seq2seq.history.history['masked_loss'], label='loss')
plt.plot(seq2seq.history.history['val_masked_loss'], label='val_loss')
plt.plot(seq2seq.history.history['masked_acc'], label='accuracy')
plt.plot(seq2seq.history.history['val_masked_acc'], label='val_accuracy')

3.5 模型推理

构建推理类:

class Inference(tf.Module):
    def __init__(self, model, tokenizer_1, tokenizer_2):
        self.model = model
        self.tokenizer_1 = tokenizer_1
        self.tokenizer_2 = tokenizer_2
    def __call__(self, sentence, MAX_TOKEN=128):
        assert isinstance(sentence, tf.Tensor)
        if len(sentence.shape) == 0:
            sentence = sentence[tf.newaxis]
        sentence = self.tokenizer_1(sentence)
        sentence = tf.concat([tf.ones(shape=[sentence.shape[0], 1], dtype='int32'), sentence, tf.ones(shape=[sentence.shape[0], 1], dtype='int32')*2], axis=-1).to_tensor()
        encoder_input = sentence
        
        start = tf.constant(1, dtype='int64')[tf.newaxis]
        end = tf.constant(2, dtype='int64')[tf.newaxis]
        # tf.TensorArray 类似于python中的列表
        output_array = tf.TensorArray(dtype=tf.int64, size=0, dynamic_size=True)
        # 在index=0的位置写入start
        output_array = output_array.write(0, start)
        
        for i in tf.range(MAX_TOKEN):
            output = tf.transpose(output_array.stack())
            predictions = self.model.predict((encoder_input, output), verbose=0) # Shape `(batch_size, seq_len, vocab_size)`
            
            # 从seq_len中的最后一个维度选择last token
            predictions = predictions[:, -1:, :]  # Shape `(batch_size, 1, vocab_size)`.
            predicted_id = tf.argmax(predictions, axis=-1)
            
            # `predicted_id`加入到output_array中作为一个新的输入
            output_array = output_array.write(i+1, predicted_id[0])
            # 如果输出end就表明停止
            if predicted_id == end:
                break
        output = tf.squeeze(output_array.stack())
        output = self.tokenizer_2.detokenize(output)
        
        return output

开始推理:

inference = Inference(seq2seq, chinese_tokenizer, english_tokenizer)
sentence = '你好呀'
sentence = tf.constant(sentence)
inference(sentence)
# 输出
# <tf.Tensor: shape=(), dtype=string, numpy=b"[START] hello ! [END]">

四、整体总结

效果还不错!训练一定时长后能够正确的翻译,好像相较于Transformer逊色了一点,但是毕竟这个模型结构比Transformer早两年;


目录
相关文章
|
4月前
|
机器学习/深度学习 算法
【文献学习】RoemNet: Robust Meta Learning based Channel Estimation in OFDM Systems
本文提出了一种基于元学习的鲁棒信道估计算法RoemNet,旨在解决OFDM系统中由于训练和部署信道模型不一致导致的问题,并展示了其在不同信道环境下优越的性能。
43 5
|
4月前
|
机器学习/深度学习 网络协议 PyTorch
【文献学习】DCCRN: Deep Complex Convolution Recurrent Network for Phase-Aware Speech Enhancement
本文介绍了一种新的深度复数卷积递归网络(DCCRN),用于处理语音增强问题,特别是针对低模型复杂度的实时处理。
197 5
|
4月前
|
机器学习/深度学习 算法 测试技术
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【文献学习】Phase-Aware Speech Enhancement with Deep Complex U-Net
文章介绍了Deep Complex U-Net模型,用于复数值的语音增强,提出了新的极坐标掩码方法和wSDR损失函数,并通过多种评估指标验证了其性能。
62 1
|
7月前
|
TensorFlow 算法框架/工具
[seq2seq]论文实现:Effective Approaches to Attention-based Neural Machine Translation(上)
[seq2seq]论文实现:Effective Approaches to Attention-based Neural Machine Translation(上)
57 1
|
7月前
|
机器学习/深度学习 自然语言处理 算法
[BPE]论文实现:Neural Machine Translation of Rare Words with Subword Units
[BPE]论文实现:Neural Machine Translation of Rare Words with Subword Units
54 0
|
机器学习/深度学习 自然语言处理 算法
【论文精读】COLING 2022 -Event Detection with Dual Relational Graph Attention Networks
图神经网络(Scarselli et al, 2009)已被广泛用于编码事件检测的依赖树,因为它们可以基于信息聚合方案有效地捕获相关信息(Cao et al, 2021)。
190 0
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
155 0
|
机器学习/深度学习 算法 数据挖掘
A Generative Adversarial Network-based Deep Learning Method for Low-quality Defect ImageReconstructi
本文提出了一种基于生成对抗网络 (GAN) 的 DL 方法,用于低质量缺陷图像识别。 GAN用于重建低质量缺陷图像,并建立VGG16网络识别重建图像。
161 0
|
机器学习/深度学习 自然语言处理 数据挖掘
【文本分类】Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification
【文本分类】Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification
171 0
【文本分类】Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification