【Java多线程】分析线程加锁导致的死锁问题以及解决方案

简介: 【Java多线程】分析线程加锁导致的死锁问题以及解决方案

1、线程加锁


其中 locker 可以是任意对象,进入 synchronized 修饰的代码块, 相当于加锁,退出 synchronized 修饰的代码块, 相当解锁。


如果一个线程,针对一个对象加上锁之后,其他线程也尝试对这个对象加锁,就会导致锁竞争进而引起阻塞(BLOCKED),这个阻塞会一直持续到上一个线程释放锁为止。


如果是两个线程分别针对不同的对象进行加锁,此时不会由锁竞争,也就不会阻塞。


出现锁竞争进而引起阻塞状态,这个阻塞会一直持续到下一个线程释放锁为止。


但是,设想一个场景,共有AB两个线程,此时A线程因为锁竞争进入阻塞状态,而如果此时B线程恰巧也正在阻塞状态,由于AB线程都进入了阻塞状态,此时进程无法运行,出现死锁问题。下面针对死锁问题的出现以及解决方法展开讨论。


2、死锁问题的三种经典场景

2.1、一个线程一把锁

public static void main(String[] args) {
    Object locker = new Object();
    Thread t = new Thread(() -> {
        synchronized (locker) {   //两次加锁,加的是同一把锁
            synchronized (locker) {   //两次加锁,加的是同一把锁
                System.out.println("hello synchronized");
            }
        }
    });
    t.start();
}

需要注意的是,这里最直观的感觉是进行了两次加锁,会发生锁冲突。第一次针对locker加锁之后,在还没释放锁的时候又尝试对locker加锁,理论会出现锁冲突。


至于事实上是否会出现所冲突进而出现死锁,需要分情况讨论:


1、如果是不可重入锁,则就会出现锁竞争引起死锁。


2、如果是可重入锁,则不会出现锁竞争引起死锁,Java中的锁就是可重入锁,因此可以正常打印。


可以把这种情况理解成:【屋钥匙锁在了屋里】


2.2、两个线程两把锁

package thread;
public class ThreadDemo22 {
    public static void main(String[] args) {
        Object A = new Object();
        Object B = new Object();
        Thread t1 = new Thread(() -> {
            synchronized (A) {
                // sleep一下, 给 t2 时间, 让 t2 也能拿到 B
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 尝试获取 B, 并没有释放 A
                synchronized (B) {
                    System.out.println("t1 拿到了两把锁!");
                }
            }
        });
        Thread t2 = new Thread(() -> {
            synchronized (A) {
                // sleep一下, 给 t1 时间, 让 t1 能拿到 A
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 尝试获取 A, 并没有释放 B
                synchronized (B) {
                    System.out.println("t2 拿到了两把锁!");
                }
            }
        });
        t1.start();
        t2.start();
    }
}
package thread;
public class ThreadDemo22 {
    public static void main(String[] args) {
        Object A = new Object();
        Object B = new Object();
        Thread t1 = new Thread(() -> {
            synchronized (A) {
                // sleep一下, 给 t2 时间, 让 t2 也能拿到 B
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 尝试获取 B, 并没有释放 A
                synchronized (B) {
                    System.out.println("t1 拿到了两把锁!");
                }
            }
        });
        Thread t2 = new Thread(() -> {
            synchronized (A) {
                // sleep一下, 给 t1 时间, 让 t1 能拿到 A
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 尝试获取 A, 并没有释放 B
                synchronized (B) {
                    System.out.println("t2 拿到了两把锁!");
                }
            }
        });
        t1.start();
        t2.start();
    }
}


两个线程,两把锁。线程A获取到锁A,线程B获取到锁B,在没释放锁AB的前提下,线程A尝试获取锁B,线程B尝试获取锁A,就会出现死锁。


可以把这种情况理解成:【屋钥匙锁在了车里,车钥匙锁在了屋里】


2.3、N个线程M把锁(哲学家就餐问题)

首先假设一个场景,一张圆桌上坐着五个人,每个人面前都有一碗面条,桌子上一共有五根筷子(不是五双),而将五根筷子分别摆放在两人各自之间,如下图。



       要想吃面条,需要拿起自己身旁的两根筷子(左右两根,只能拿身边的这两根)。假设此时A拿起了左右筷子吃面条,此时B就无法吃,因为A正在使用B的左筷子,B目前只能拿起一根右筷子,并且开始等待,等待A放下筷子,再拿起左筷子吃面条(此处的等待只有拿到另外一根筷子后才会停止,并且等待的同时不会放下已经拿起的筷子)。同理E也一样。


       此处讨论的问题中N等于M。我们将线程比作人,筷子比作锁,此时B所处的状态可以比作锁竞争引起的阻塞状态。大家可以试着想想各种其他不同的情况,始终都能保证桌上5个人至少有一人正在吃面条,除了一种特殊的极端情况下:


       极端情况下,会出现所有人同时都拿了同一侧的筷子(例如都拿了左筷子),导致所有人都不能拿起另一侧的筷子而都进入阻塞,等待着别人放下筷子后自己再拿起来。但是此时又因为没有一个人能吃的上面条,因此永远不会有人放下筷子,出现死锁。


       这个问题也被人称之为:哲学家就餐问题。


3、解决死锁问题

要想解决死锁情况,就得先讨论产生死锁的原因:


死锁产生的四个必要条件(缺一不可)


由于是必要条件,只需要破坏其中一种条件,就可以让死锁解开。


  1. 互斥使用。一个线程拿到了这把锁,另一个线程也想获取,就需要阻塞等待,这是锁最基本的特性,不好破坏。
  2. 不可抢占。一个线程拿到了锁之后,只能主动解锁,不能让别的线程强行把锁抢走,这也是锁最基本的特性,不好破坏。
  3. 请求保持。一个线程拿到了锁A,在持有锁A的前提下,尝试获取锁B。这些场景下必须需要这样使用,也不好破坏。
  4. 循环等待/环路等待,是一种代码结构,是最容易破坏。

由上述分析可以得知,想要解决死锁问题,要从破坏循环等待/环路等待入手。


引入加锁顺序的规则就是很好破解循环等待的办法,即给每一个锁编号,规定只能按照锁的序号顺序拿起,就能打破循环等待。


举例说明:


       依然是是上面的哲学家就餐问题,此时给筷子编号序号之后,要求只能按照顺序由小到大拿起,此时就算是所有人同时拿起筷子,C先拿1,B先拿2,A先拿3,E先拿4,此时D按照规定应该拿起1,但是此时C正拿着1,因此此时D还没有机会拿起5,就直接进入阻塞状态。此场景下E就能拿起5开始吃面,E放下筷子A就接着吃,依此类推,就将可能出现的死锁问题破解了。


目录
相关文章
|
24天前
|
安全 Java 编译器
线程安全问题和锁
本文详细介绍了线程的状态及其转换,包括新建、就绪、等待、超时等待、阻塞和终止状态,并通过示例说明了各状态的特点。接着,文章深入探讨了线程安全问题,分析了多线程环境下变量修改引发的数据异常,并通过使用 `synchronized` 关键字和 `volatile` 解决内存可见性问题。最后,文章讲解了锁的概念,包括同步代码块、同步方法以及 `Lock` 接口,并讨论了死锁现象及其产生的原因与解决方案。
56 10
线程安全问题和锁
|
4天前
|
安全 Java 调度
Java编程时多线程操作单核服务器可以不加锁吗?
Java编程时多线程操作单核服务器可以不加锁吗?
17 2
|
19天前
|
存储 缓存 安全
【Java面试题汇总】多线程、JUC、锁篇(2023版)
线程和进程的区别、CAS的ABA问题、AQS、哪些地方使用了CAS、怎么保证线程安全、线程同步方式、synchronized的用法及原理、Lock、volatile、线程的六个状态、ThreadLocal、线程通信方式、创建方式、两种创建线程池的方法、线程池设置合适的线程数、线程安全的集合?ConcurrentHashMap、JUC
【Java面试题汇总】多线程、JUC、锁篇(2023版)
|
4天前
|
传感器 监控 数据可视化
【Java】智慧工地解决方案源码和所需关键技术
智慧工地解决方案是一种新的工程全生命周期管理理念。它通过使用各种传感器、数传终端等物联网手段获取工程施工过程信息,并上传到云平台,以保障数据安全。
25 7
|
8天前
|
存储 算法 Java
关于python3的一些理解(装饰器、垃圾回收、进程线程协程、全局解释器锁等)
该文章深入探讨了Python3中的多个重要概念,包括装饰器的工作原理、垃圾回收机制、进程与线程的区别及全局解释器锁(GIL)的影响等,并提供了详细的解释与示例代码。
15 0
|
11天前
|
并行计算 API 调度
探索Python中的并发编程:线程与进程的对比分析
【9月更文挑战第21天】本文深入探讨了Python中并发编程的核心概念,通过直观的代码示例和清晰的逻辑推理,引导读者理解线程与进程在解决并发问题时的不同应用场景。我们将从基础理论出发,逐步过渡到实际案例分析,旨在揭示Python并发模型的内在机制,并比较它们在执行效率、资源占用和适用场景方面的差异。文章不仅适合初学者构建并发编程的基础认识,同时也为有经验的开发者提供深度思考的视角。
|
2月前
|
存储 监控 Java
Java多线程优化:提高线程池性能的技巧与实践
Java多线程优化:提高线程池性能的技巧与实践
64 1
|
4天前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
12天前
|
Java Spring
spring多线程实现+合理设置最大线程数和核心线程数
本文介绍了手动设置线程池时的最大线程数和核心线程数配置方法,建议根据CPU核数及程序类型(CPU密集型或IO密集型)来合理设定。对于IO密集型,核心线程数设为CPU核数的两倍;CPU密集型则设为CPU核数加一。此外,还讨论了`maxPoolSize`、`keepAliveTime`、`allowCoreThreadTimeout`和`queueCapacity`等参数的设置策略,以确保线程池高效稳定运行。
72 10
spring多线程实现+合理设置最大线程数和核心线程数
|
20天前
|
Java 数据库 Android开发
一个Android App最少有几个线程?实现多线程的方式有哪些?
本文介绍了Android多线程编程的重要性及其实现方法,涵盖了基本概念、常见线程类型(如主线程、工作线程)以及多种多线程实现方式(如`Thread`、`HandlerThread`、`Executors`、Kotlin协程等)。通过合理的多线程管理,可大幅提升应用性能和用户体验。
35 15
一个Android App最少有几个线程?实现多线程的方式有哪些?
下一篇
无影云桌面