NPU推理&微调大模型实战

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 本文为魔搭社区轻量级训练推理工具SWIFT微调实战教程系列

本文为魔搭社区轻量级训练推理工具SWIFT微调实战教程系列

SWIFT(Scalable lightWeight Infrastructure for Fine-Tuning)是魔搭ModelScope开源社区推出的一套完整的轻量级训练、推理、评估和部署工具,支持200+大模型、15+多模态大模型以及10+轻量化Tuners,让AI爱好者能够使用自己的消费级显卡玩转大模型和AIGC。


近日,许多开发者提出希望魔搭社区的工具可以与NPU等更多类型的卡兼容。在社区开发者钏助斌的联合支持下,魔搭社区ms-swift大模型微调框架进行了适配。目前,ms-swift可支持NPU的单卡、DDP、ZeRO2和ZeRO3的训练与推理。接下来,将以Qwen1.5-7B-Chat为例,为大家提供基于NPU推理和微调大模型实操的教程,具体代码放置在GitHub


环境准备

实验环境:8 * 昇腾910B3,每张卡的显存为64GB (感谢昇腾社区对modelscope和swift的支持~)


这里我们对实验环境进行安装,其中包含了虚拟环境的创建、ms-swift以及相关依赖的安装以及torch-npu的安装。


# 创建新的conda虚拟环境(可选)
conda create -n swift-npu python=3.10 -y
conda activate swift-npu
# 设置pip全局镜像 (可选,加速下载)
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
# 安装ms-swift(当前推荐从源码安装, 待发版后可直接pip安装)
git clone https://github.com/modelscope/swift.git
cd swift
pip install -e '.[llm]'
# 安装torch-npu
pip install torch-npu decorator
# 如果你想要使用deepspeed (控制显存占用,训练速度会有一定下降)
pip install deepspeed
# 环境对齐 (通常不需要运行. 如果你运行错误, 可以跑下面的代码, 仓库使用最新环境测试)
pip install -r requirements/framework.txt  -U
pip install -r requirements/llm.txt  -U



安装完环境后,我们测试实验环境是否安装正确,NPU能否被正常加载:

from transformers.utils import is_torch_npu_available
import torch
print(is_torch_npu_available())  # True
print(torch.npu.device_count())  # 8
print(torch.randn(10, device='npu:0'))



查看NPU的P2P连接,这里看到每个NPU都通过7条HCCS与其他NPU互联

(valle) root@valle:~/src# npu-smi info -t topo
     NPU0       NPU1       NPU2       NPU3       NPU4       NPU5       NPU6       NPU7       CPU Affinity
NPU0       X          HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       144-167
NPU1       HCCS       X          HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       144-167
NPU2       HCCS       HCCS       X          HCCS       HCCS       HCCS       HCCS       HCCS       96-119
NPU3       HCCS       HCCS       HCCS       X          HCCS       HCCS       HCCS       HCCS       96-119
NPU4       HCCS       HCCS       HCCS       HCCS       X          HCCS       HCCS       HCCS       0-23
NPU5       HCCS       HCCS       HCCS       HCCS       HCCS       X          HCCS       HCCS       0-23
NPU6       HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       X          HCCS       48-71
NPU7       HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       HCCS       X          48-71
Legend:
  X    = Self
  SYS  = Path traversing PCIe and NUMA nodes. Nodes are connected through SMP, such as QPI, UPI.
  PHB  = Path traversing PCIe and the PCIe host bridge of a CPU.
  PIX  = Path traversing a single PCIe switch
  PXB  = Path traversing multipul PCIe switches
  HCCS = Connection traversing HCCS.
  NA   = Unknown relationship.



查看NPU状态, npu-smi命令详解可以查看官方文档(https://support.huawei.com/enterprise/zh/doc/EDOC1100079287/10dcd668

(valle) root@valle:~/src# npu-smi info
+------------------------------------------------------------------------------------------------+
| npu-smi 24.1.rc1.b030            Version: 24.1.rc1.b030                                        |
+---------------------------+---------------+----------------------------------------------------+
| NPU   Name                | Health        | Power(W)    Temp(C)           Hugepages-Usage(page)|
| Chip                      | Bus-Id        | AICore(%)   Memory-Usage(MB)  HBM-Usage(MB)        |
+===========================+===============+====================================================+
| 0     910B3               | OK            | 101.8       43                0    / 0             |
| 0                         | 0000:C1:00.0  | 0           0    / 0          3318 / 65536         |
+===========================+===============+====================================================+
| 1     910B3               | OK            | 92.0        39                0    / 0             |
| 0                         | 0000:C2:00.0  | 0           0    / 0          3314 / 65536         |
+===========================+===============+====================================================+
| 2     910B3               | OK            | 102.0       40                0    / 0             |
| 0                         | 0000:81:00.0  | 0           0    / 0          3314 / 65536         |
+===========================+===============+====================================================+
| 3     910B3               | OK            | 99.8        40                0    / 0             |
| 0                         | 0000:82:00.0  | 0           0    / 0          3314 / 65536         |
+===========================+===============+====================================================+
| 4     910B3               | OK            | 98.6        45                0    / 0             |
| 0                         | 0000:01:00.0  | 0           0    / 0          3314 / 65536         |
+===========================+===============+====================================================+
| 5     910B3               | OK            | 99.7        44                0    / 0             |
| 0                         | 0000:02:00.0  | 0           0    / 0          3314 / 65536         |
+===========================+===============+====================================================+
| 6     910B3               | OK            | 103.8       45                0    / 0             |
| 0                         | 0000:41:00.0  | 0           0    / 0          3314 / 65536         |
+===========================+===============+====================================================+
| 7     910B3               | OK            | 98.2        44                0    / 0             |
| 0                         | 0000:42:00.0  | 0           0    / 0          3315 / 65536         |
+===========================+===============+====================================================+



微调

接下来,我们介绍在单卡、DDP、ZeRO2和ZeRO3的设置下,使用ms-swift对Qwen1.5-7B-Chat在blossom-math-zh数据集下进行LoRA微调的sh脚本、显存需求和运行时长。如果要进行全参数的微调,设置参数--sft_type full即可。要了解更多的超参数设置,请查看ms-swift的官方文档:https://github.com/modelscope/swift/blob/main/docs/source/LLM/index.md


单卡训练

通过如下命令启动单卡微调:

# 实验环境: 昇腾910B3
# 显存需求: 28 GB
# 运行时长: 8小时
ASCEND_RT_VISIBLE_DEVICES=0 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \


数据并行训练

我们使用其中的4卡进行ddp训练

# 实验环境: 4 * 昇腾910B3
# 显存需求: 4 * 22 GB
# 运行时长: 2小时
NPROC_PER_NODE=4 \
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \


Deepspeed训练

ZeRO2:

# 实验环境: 4 * 昇腾910B3
# 显存需求: 4 * 28GB
# 运行时长: 3.5小时
NPROC_PER_NODE=4 \
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \
    --deepspeed default-zero2 \



ZeRO3:

# 实验环境: 4 * 昇腾910B3
# 显存需求: 4 * 22 GB
# 运行时长: 8.5小时
NPROC_PER_NODE=4 \
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 \
swift sft \
    --model_type qwen1half-7b-chat \
    --dataset blossom-math-zh \
    --num_train_epochs 5 \
    --sft_type lora \
    --output_dir output \
    --deepspeed default-zero3 \



这里展示在不同设置下(单卡、DDP、ZeRO2和ZeRO3)进行LoRA微调的NPU的显存占用情况:

模型大小

NPU数量

训练设置

最大显存占用量

7B

1

单卡

1 * 28 GB

7B

4

DDP

4 * 22 GB

7B

4

ZeRO2

4 * 28 GB

7B

4

ZeRO3

4 * 22 GB

7B

8

DDP

8 * 22 GB

14B

1

单卡

1 * 45 GB

14B

8

DDP

8 * 51 GB

14B

8

ZeRO2

8 * 49 GB

14B

8

ZeRO3

8 * 31 GB


推理


然后,我们展示使用ms-swift对原始的Qwen1.5-7B-Chat以及微调后的模型进行推理的sh脚本:


原始模型:

ASCEND_RT_VISIBLE_DEVICES=0 swift infer \
    --model_type qwen1half-7b-chat



LoRA微调后:

# 直接推理
ASCEND_RT_VISIBLE_DEVICES=0 swift infer \
    --ckpt_dir 'xxx/vx-xxx/checkpoint-xxx' --load_dataset_config true
# Merge LoRA增量权重并推理
CUDA_VISIBLE_DEVICES=0 swift export \
    --ckpt_dir 'xxx/vx-xxx/checkpoint-xxx' --merge_lora true
CUDA_VISIBLE_DEVICES=0 swift infer --ckpt_dir 'xxx/vx-xxx/checkpoint-xxx-merged'



总结


本文详细介绍了如何在NPU环境下使用ms-swift对Qwen1.5-7B-Chat进行微调和推理,包括环境安装、相关脚本以及对于设置的显存占用等。


本文为SWIFT LLM&AIGC微调场景化最佳实践系列之一,后续将继续通过魔搭社区推出场景化教程。目前SWIFT已支持近200种LLM和MLLM(多模态大模型)的训练、推理、评测和部署,支持LoRA、QLoRA、LISA、LongLoRA等十余种tuners,一行代码即可开启模型训练,欢迎对大模型和AIGC微调部署感兴趣的开发者小伙伴们多多交流!


Github:

https://github.com/modelscope/swift


官方交流群:

ed932556-c614-4bb2-bbe8-f54c1c7cbfce[1].png


点击直达本文代码github,感谢支持star~

swift/docs/source/LLM/NPU推理与微调最佳实践.md at main · modelscope/swift · GitHub



相关文章
|
10月前
|
机器学习/深度学习 存储 人工智能
谷歌Gemma介绍、微调、量化和推理
谷歌的最新的Gemma模型是第一个使用与Gemini模型相同的研究和技术构建的开源LLM。这个系列的模型目前有两种尺寸,2B和7B,并且提供了聊天的基本版和指令版。
633 2
|
10月前
|
存储 物联网 测试技术
在16G的GPU上微调Mixtral-8x7B
Mixtral-8x7B是最好的开源llm之一。但是消费级硬件上对其进行微调也是非常具有挑战性的。因为模型需要96.8 GB内存。而微调则需要更多的内存来存储状态和训练数据。比如说80gb RAM的H100 GPU是不够的。
171 2
|
机器学习/深度学习 人工智能 API
使用TensorRT-LLM进行高性能推理
LLM的火爆之后,英伟达(NVIDIA)也发布了其相关的推理加速引擎TensorRT-LLM。TensorRT是nvidia家的一款高性能深度学习推理SDK。此SDK包含深度学习推理优化器和运行环境,可为深度学习推理应用提供低延迟和高吞吐量。而TensorRT-LLM是在TensorRT基础上针对大模型进一步优化的加速推理库,它号称可以增加4倍的推理速度。
575 0
|
10月前
|
机器学习/深度学习 异构计算 Python
Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)
对于深度学习初学者来说,JupyterNoteBook的脚本运行形式显然更加友好,依托Python语言的跨平台特性,JupyterNoteBook既可以在本地线下环境运行,也可以在线上服务器上运行。GoogleColab作为免费GPU算力平台的执牛耳者,更是让JupyterNoteBook的脚本运行形式如虎添翼。 本次我们利用Bert-vits2的最终版Bert-vits2-v2.3和JupyterNoteBook的脚本来复刻生化危机6的人气角色艾达王(ada wong)。
Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)
|
3月前
基于VisualGLM-6B大模型的本地部署与推理
本文是基于清华开源的VisualGLM-6B 支持图像中英文的多模态对话语言模型,进行了一系列本地的简单部署,包括环境配置、模型部署、演示推理、模型微调(官方提供的代码),由于个人电脑显存不足,最后是在阿里云服务器交互式平台DSW终端进行微调和训练操作的。
134 17
|
2月前
|
缓存 异构计算
DashInfer-VLM,多模态SOTA推理性能,超vLLM!
DashInfer-VLM是一个针对于视觉多模态大模型VLM的推理架构,特别优化了Qwen VL模型的推理加速,DashInfer-VLM和其他的VLM的推理加速框架最大的区别是, 它把VIT部分和LLM部分进行了分离,并且VIT和LLM的运行是并行运行,不互相干扰。
509 16
|
10月前
|
机器学习/深度学习 人工智能 Cloud Native
大语言模型推理提速,TensorRT-LLM 高性能推理实践
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
101957 2
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
NVIDIA Triton系列13-用 FasterTransformer 和 Triton 加速大型 Transformer 模型的推理
本文介绍了 NVIDIA FasterTransformer 库及其在加速大型 Transformer 模型推理中的应用。FasterTransformer 是一个高效、可扩展的库,支持分布式多 GPU 推理,特别适合处理具有数万亿参数的模型。文章还详细讲解了如何使用 FasterTransformer 和 NVIDIA Triton 推理服务器优化 GPT-J 和 T5 模型的推理性能,包括张量并行、流水线并行等技术。
156 0
NVIDIA Triton系列13-用 FasterTransformer 和 Triton 加速大型 Transformer 模型的推理
|
10月前
|
机器学习/深度学习 算法 物联网
LISA微调技术解析:比LoRA更低的显存更快的速度
LISA是Layerwise Importance Sampling for Memory-Efficient Large Language Model Fine-Tuning的简写,由UIUC联合LMFlow团队于近期提出的一项LLM微调技术,可实现把全参训练的显存使用降低到之前的三分之一左右,而使用的技术方法却是非常简单。
|
10月前
|
机器学习/深度学习 人工智能 算法
为什么大模型训练需要GPU,以及适合训练大模型的GPU介绍
为什么大模型训练需要GPU,以及适合训练大模型的GPU介绍
494 1

热门文章

最新文章