主要内容
该模型为simulink仿真模型,主要解决的是双机并联后线路阻抗引起的功率分布不均问题,通过一致性算法与虚拟阻抗控制解决由线路阻抗不匹配而导致的无功不能精确分配问题和逆变器的环流问题,并且通过二次电压和频率补偿实现电压和频率的稳定控制。
1.一致性算法
“一致性”是指将系统中所有节点的某个控制目标随着时间的迁移逐渐达到一致状态。分布式一致性控制主要分为两类:协调同步和跟踪同步。所谓协调同步是指将系统各个节点的某个控制目标同步到一个未规定或不可控的相同值,也称无领导者的一致性控制。跟踪同步控制是有领导者的一致性控制,其最终目的是将系统的其他各个节点的某个控制目标追踪到领导者状态,即向领导者看齐。
本模型采用的是协调同步无领导的一致性算法,模型表达式如下:
2.自适应虚拟阻抗控制
在线路阻抗主要呈感性的微电网系统中,若要使各 DG 单元输出的无功功率按各自额定无功成比例分配,其线路阻抗必须要满足如下表达式:
即线路阻抗必须与无功-下垂系数成正比,与无功功率成反比。然而在实际中,由于线路阻抗不匹配,上述条件很难满足。因此,在这里引入自适应虚拟阻抗控制,使各DG的线路阻抗满足上述条件,实现无功的精确分配。
引入自适应虚拟阻抗控制后的等效电抗为:
当线路阻抗不匹配时,自适应调节虚拟阻抗,即可实现输出无功功率按各自额定无功成比例分配,因此,每台 DG 的下垂输出电压将相等,每台 DG 至公共母线 PCC 的电压降将相等,从而DG 间的环流将会得到有效的抑制。
3.二次电压控制
各 DG 的下垂输出电压虽然在引入虚拟阻抗控制之后能够达到一致,但虚拟阻抗控制给参考电压造成了一定程度的压降,且线路上的阻抗同样会造成一定程度的压降,则通过控制电路和传输线路后,公共母线上的电压造成的电压跌落就显得尤为明显,母线与公共负载相连,为了不影响负载端的可靠供电。这里引入基于一致性算法的电压恢复控制,将公共母线上的电压恢复到其参考值。具体模型如下:
模型结构
1.总体仿真模型
2.优化改进部分模型
其中,放大自适应虚拟阻抗部分如下:
3.逆变器下垂控制模型
仿真结果一览
有功功率
无功功率
电压补偿
功率补偿