基于Logistic函数的负荷需求响应(matlab代码)

简介: 基于Logistic函数的负荷需求响应(matlab代码)

负荷需求响应模型种类较多,有电价型和激励型等类型,本次和大家分享一个基于Logistic函数的负荷转移率模型,该模型属于电价型,由于该方法使用的较少,从创新方面给了大家更广阔的空间。

1 基于Logistic函数的负荷转移率模型

由消费者心理学可知,电价差过大、过小以及在电价差变化处响应度曲线平滑性,均会引起用户需求响应的变化。在电价激励机制下,用户本着自愿原则,其响应行为具有明显的随机性,则真实需求响应曲线会处于乐观与悲观响应预测曲线之间,具备模糊属性。如图 2-5 所示,以峰谷负荷转移为例,建立了基于 Logistic 函数的模糊响应机理,图中 Δppv 表示峰谷时段电价差,λpv 表示峰转谷负荷转移率,即在某时段峰转谷的负荷量与峰时段平均用电量比值,从而体现用户对不同电价的响应程度。该模型划分了“死区”、“响应区”和“饱和区”。在“死区”,由于电价差过小,未能引发用户自主调整用电模式;在“响应区”,随着电价差增大,用户响应积极性被调动;在“饱和区”,虽然电价差很大,但已完全挖掘用户负荷弹性潜力,因此负荷转移率值达到极限。另外,当电价差为 0 时,即未采用分时电价,此时用户响应行为具有很强的随机性,甚至负荷转移率出现负值的情况。

基于上述模型,为提高实际情况下分时电价因素对负荷曲线拟合的精度,Logistic 函数利用可变参数,增加负荷转移率变化的跨度,其函数模型如式

在式(2-11)中 a 表示函数值范围,c 为 a/2+b 函数值所对应的横坐标,近似表示“响应区”电价差的中点,b 用于上下平移函数曲线。基于上述公式,即可提高乐观和悲观响应预测曲线的拟合精度,从而反映分时电价对用户实际响应机理模型的影响。因此,为提高模型精度,本节通过用户响应随机性和乐观响应隶属度两个指标对实际用户响应机理模型进行概率约束。如图 2-6 所示,在“死区”,电价差过小,用户响应行为具有很强的随机性,故由乐观和悲观响应预测的平均值确定。在“响应区”,用户响应行为明显,且响应行为更倾向于乐观响应预测曲线。因此需考虑采用偏大型半梯形隶属度函数计算乐观响应隶属度,并将其作为需求响应机理的概率约束。在“饱和区”,由于两种曲线重合,用户响应行为即可用负荷转移率最大值表示。具体计算公式如(2-12)、(2-13)所示。

2 程序示例

程序示例给出峰谷负荷转移率计算程序,如下所示。

jf=0.8118;%峰段电价
jg=0.4438;%谷段电价
jp=0.5713;%平段电价
dj=[jg.*ones(1,7) jf.*ones(1,7) jg.*ones(1,4) jf.*ones(1,4) jp.*ones(1,2)];%电价情况
pload1=[270 225 215 230 245 295 400 425 475 500 560 575 577.5  527.5  450 350 375 450 525 575 600 575 500 425]./20;%负荷
detap=jf-jg;%峰谷价差
lammax=al/(1+exp(-(detap-cl)/ul))+bl;%乐观负荷转移率
lammin=ab/(1+exp(-(detap-cb)/ul))+bb;%悲观负荷转移率
mpv=(jf-jg-apv)/(bpv-apv);%乐观响应隶属度
detapv=jf-jg;%峰谷价差
if detapv<=apv%不同情况下的转移率
    lambpv=(lammax+lammin)/2;
elseif detapv<=bpv
    lambpv=lammin+(lammax+lammin)/2*(1+mpv);
else
    lambpv=lammax;
end

程序还需要根据上述编写平-谷、峰-平的程序段,构成完整程序后可运行得到下面的结果。

3 效果图

运行程序可以得到如下的效果图。

4 下载链接

相关文章
|
3月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
177 73
|
2月前
|
算法 数据可视化 数据处理
MATLAB内置函数
【10月更文挑战第6天】本文详细介绍了MATLAB的内置函数和自定义函数,涵盖数学计算、矩阵操作、图形绘制等方面。通过具体代码示例,展示了如何使用内置函数和创建自定义函数,以及它们在性能、灵活性和可读性上的优劣。同时,文章还讨论了函数文件与脚本文件的区别,匿名函数和函数句柄的高级应用,帮助读者更好地利用MATLAB解决复杂问题。
67 1
|
2月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
2月前
|
存储 机器学习/深度学习 数据可视化
MATLAB脚本与函数
【10月更文挑战第4天】本文介绍了MATLAB脚本与函数的基本概念及编写方法,涵盖脚本和函数的创建、运行及优缺点,通过示例帮助初学者快速上手。同时,文章还涉及数据类型、控制结构、数据可视化、文件操作、错误处理等内容,提供了丰富的示例和学习资源,助力初学者逐步掌握MATLAB编程。
119 3
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
216 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
105 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)